These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 9048570)
1. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism. Thompson JE; Basarab GS; Andersson A; Lindqvist Y; Jordan DB Biochemistry; 1997 Feb; 36(7):1852-60. PubMed ID: 9048570 [TBL] [Abstract][Full Text] [Related]
2. A structural account of substrate and inhibitor specificity differences between two naphthol reductases. Liao DI; Thompson JE; Fahnestock S; Valent B; Jordan DB Biochemistry; 2001 Jul; 40(30):8696-704. PubMed ID: 11467929 [TBL] [Abstract][Full Text] [Related]
3. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
4. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. Thompson JE; Fahnestock S; Farrall L; Liao DI; Valent B; Jordan DB J Biol Chem; 2000 Nov; 275(45):34867-72. PubMed ID: 10956664 [TBL] [Abstract][Full Text] [Related]
5. Two homologous fungal carbonyl reductases with different substrate specificities. Kristan K; Brunskole M; Stojan J; Rizner TL Chem Biol Interact; 2009 Mar; 178(1-3):295-302. PubMed ID: 18973748 [TBL] [Abstract][Full Text] [Related]
6. 2,3-Dihydro-2,5-dihydroxy-4H-benzopyran-4-one: a nonphysiological substrate for fungal melanin biosynthetic enzymes. Thompson JE; Basarab GS; Pierce J; Hodge CN; Jordan DB Anal Biochem; 1998 Feb; 256(1):1-6. PubMed ID: 9466791 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor. Andersson A; Jordan D; Schneider G; Lindqvist Y Structure; 1996 Oct; 4(10):1161-70. PubMed ID: 8939741 [TBL] [Abstract][Full Text] [Related]
8. Trihydroxynaphthalene reductase of Curvularia lunata--a target for flavonoid action? Brunskole M; Zorko K; Kerbler V; Martens S; Stojan J; Gobec S; Lanisnik Rizner T Chem Biol Interact; 2009 Mar; 178(1-3):259-67. PubMed ID: 19010313 [TBL] [Abstract][Full Text] [Related]
9. Structures of trihydroxynaphthalene reductase-fungicide complexes: implications for structure-based design and catalysis. Liao D; Basarab GS; Gatenby AA; Valent B; Jordan DB Structure; 2001 Jan; 9(1):19-27. PubMed ID: 11342131 [TBL] [Abstract][Full Text] [Related]
10. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B). Cunningham O; Gore MG; Mantle TJ Biochem J; 2000 Jan; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517 [TBL] [Abstract][Full Text] [Related]
11. Partition analysis of an enzyme acting concurrently upon two substrates in a continuous multiwavelength assay. Thompson JE; Jordan DB Anal Biochem; 1998 Feb; 256(1):7-13. PubMed ID: 9466792 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and biological evaluation of novel inhibitors against 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea. Chen H; Han X; Qin N; Wei L; Yang Y; Rao L; Chi B; Feng L; Ren Y; Wan J Bioorg Med Chem; 2016 Mar; 24(6):1225-30. PubMed ID: 26860927 [TBL] [Abstract][Full Text] [Related]
13. Crystallization and preliminary x-ray diffraction study of 1 ,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea. Andersson A; Jordan D; Schneider G; Valent B; Lindqvist Y Proteins; 1996 Apr; 24(4):525-7. PubMed ID: 8860003 [TBL] [Abstract][Full Text] [Related]
14. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Kratzer R; Nidetzky B Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715 [TBL] [Abstract][Full Text] [Related]
15. The role of Ala231 and Trp227 in the substrate specificities of fungal 17β-hydroxysteroid dehydrogenase and trihydroxynaphthalene reductase: Steroids versus smaller substrates. Svegelj MB; Stojan J; Rižner TL J Steroid Biochem Mol Biol; 2012 Mar; 129(1-2):92-8. PubMed ID: 21439381 [TBL] [Abstract][Full Text] [Related]
16. A flexible lid controls access to the active site in 1,3,8-trihydroxynaphthalene reductase. Andersson A; Jordan D; Schneider G; Lindqvist Y FEBS Lett; 1997 Jan; 400(2):173-6. PubMed ID: 9001392 [TBL] [Abstract][Full Text] [Related]
17. Catalytic properties of dihydroorotate dehydrogenase from Saccharomyces cerevisiae: studies on pH, alternate substrates, and inhibitors. Jordan DB; Bisaha JJ; Picollelli MA Arch Biochem Biophys; 2000 Jun; 378(1):84-92. PubMed ID: 10871048 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase. Argyrou A; Blanchard JS Biochemistry; 2004 Apr; 43(14):4375-84. PubMed ID: 15065882 [TBL] [Abstract][Full Text] [Related]
19. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase. Ratnam K; Ma H; Penning TM Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026 [TBL] [Abstract][Full Text] [Related]
20. Leishmania major pteridine reductase 1 belongs to the short chain dehydrogenase family: stereochemical and kinetic evidence. Luba J; Nare B; Liang PH; Anderson KS; Beverley SM; Hardy LW Biochemistry; 1998 Mar; 37(12):4093-104. PubMed ID: 9521731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]