These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9048597)

  • 1. Two frog melanotrope cell subpopulations exhibiting distinct biochemical and physiological patterns in basal conditions and under thyrotropin-releasing hormone stimulation.
    Gonzalez de Aguilar JL; Malagon MM; Vazquez-Martinez RM; Lihrmann I; Tonon MC; Vaudry H; Gracia-Navarro F
    Endocrinology; 1997 Mar; 138(3):970-7. PubMed ID: 9048597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of dopamine on two frog melanotrope cell subpopulations.
    González de Aguilar JL; Malagón MM; Vázquez-Martínez RM; Martínez-Fuentes AJ; Tonon MC; Vaudry H; Gracia-Navarro F
    Endocrinology; 1999 Jan; 140(1):159-64. PubMed ID: 9886821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanotrope cell plasticity: a key mechanism for the physiological adaptation to background color changes.
    Vazquez-Martinez R; Peinado JR; Gonzalez De Aguilar JL; Desrues L; Tonon MC; Vaudry H; Gracia-Navarro F; Malagon MM
    Endocrinology; 2001 Jul; 142(7):3060-7. PubMed ID: 11416028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphibian melanotrope subpopulations respond differentially to hypothalamic secreto-inhibitors.
    Vázquez-Martínez R; Malagón MM; Castaño JP; Tonon MC; Vaudry H; Gracia-Navarro F
    Neuroendocrinology; 2001 Jun; 73(6):426-34. PubMed ID: 11408784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and functional heterogeneity of frog melanotrope cells.
    Gonzalez de Aguilar JL; Tonon MC; Ruiz-Navarro A; Vaudry H; Gracia-Navarro F
    Neuroendocrinology; 1994 Feb; 59(2):176-82. PubMed ID: 8127408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuropeptide Y inhibits spontaneous alpha-melanocyte-stimulating hormone (alpha-MSH) release via a Y(5) receptor and suppresses thyrotropin-releasing hormone-induced alpha-MSH secretion via a Y(1) receptor in frog melanotrope cells.
    Galas L; Tonon MC; Beaujean D; Fredriksson R; Larhammar D; Lihrmann I; Jegou S; Fournier A; Chartrel N; Vaudry H
    Endocrinology; 2002 May; 143(5):1686-94. PubMed ID: 11956150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of protein kinase C and protein tyrosine kinase in thyrotropin-releasing hormone-induced stimulation of alpha-melanocyte-stimulating hormone secretion in frog melanotrope cells.
    Galas L; Lamacz M; Garnier M; Roubos EW; Tonon MC; Vaudry H
    Endocrinology; 1999 Jul; 140(7):3264-72. PubMed ID: 10385423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis by mass spectrometry of POMC-derived peptides in amphibian melanotrope subpopulations.
    Vázquez-Martínez RM; Malagón MM; van Strien FJ; Jespersen S; van der Greef J; Roubos EW; Gracia-Navarro F
    Life Sci; 1999; 64(11):923-30. PubMed ID: 10201641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of extracellular and intracellular calcium sources in TRH-induced alpha-MSH secretion from frog melanotrope cells.
    Galas L; Lamacz M; Garnier M; Roubos EW; Tonon MC; Vaudry H
    Mol Cell Endocrinol; 1998 Mar; 138(1-2):25-39. PubMed ID: 9685212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RT-PCR analysis of the expression of POMC and its processing enzyme PC1 in amphibian melanotropes.
    Peinado JR; Cruz-García D; Vázquez-Martínez R; Anouar Y; Tonon MC; Vaudry H; Gracia-Navarro F; Castaño JP; Malagón MM
    Gen Comp Endocrinol; 2006 Jun; 147(2):222-30. PubMed ID: 16480985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melanotrope secretory cycle is regulated by physiological inputs via the hypothalamus.
    Vazquez-Martinez R; Castaño JP; Tonon MC; Vaudry H; Gracia-Navarro F; Malagon MM
    Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1039-46. PubMed ID: 12876074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis.
    de Rijk EP; Terlou M; Cruijsen PM; Jenks BG; Roubos EW
    Cytometry; 1992; 13(8):863-71. PubMed ID: 1333944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and characterization of two populations of melanotrope cells from the intermediate lobe of the frog pituitary.
    González de Aguilar JL; Tonon MC; Vaudry H; Gracia-Navarro F
    Ann N Y Acad Sci; 1993 May; 680():527-9. PubMed ID: 8390184
    [No Abstract]   [Full Text] [Related]  

  • 14. [Role of calcium in TRH-induced secretion of alpha-MSH in the frog].
    Lamacz M; Leneveu E; Tonon MC; Bernard C; Gouteux L; Vaudry H
    Ann Endocrinol (Paris); 1986; 47(1):54-6. PubMed ID: 3094425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pituitary proopiomelanocortin-derived peptides and hypothalamus-pituitary-interrenal axis activity in gilthead sea bream (Sparus aurata) during prolonged crowding stress: differential regulation of adrenocorticotropin hormone and alpha-melanocyte-stimulating hormone release by corticotropin-releasing hormone and thyrotropin-releasing hormone.
    Rotllant J; Balm PH; Ruane NM; Pérez-Sánchez J; Wendelaar-Bonga SE; Tort L
    Gen Comp Endocrinol; 2000 Aug; 119(2):152-63. PubMed ID: 10936035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual effects of thyrotrophin-releasing hormone (TRH) on K+ conductance in frog pituitary melanotrophs. TRH-induced alpha-melanocyte-stimulating hormone release is not mediated through voltage-sensitive K+ channels.
    Louiset E; Cazin L; Lamacz M; Tonon MC; Vaudry H
    J Mol Endocrinol; 1989 Nov; 3(3):207-18. PubMed ID: 2511851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholaminergic control of alpha-melanocyte-stimulating hormone (alpha MSH) release by frog neurointermediate lobe in vitro: evidence for direct stimulation of alpha MSH release by thyrotropin-releasing hormone.
    Tonon MC; Leroux P; Stoeckel ME; Jegou S; Pelletier G; Vaudry H
    Endocrinology; 1983 Jan; 112(1):133-41. PubMed ID: 6401174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and processing of the [Pro(2),Met(13)]somatostatin-14 precursor in the intermediate lobe of the frog pituitary.
    Tostivint H; Vieau D; Chartrel N; Boutelet I; Galas L; Fournier A; Lihrmann I; Vaudry H
    Endocrinology; 2002 Sep; 143(9):3472-81. PubMed ID: 12193560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target cells of gamma3-melanocyte-stimulating hormone detected through intracellular Ca2+ responses in immature rat pituitary constitute a fraction of all main pituitary cell types, but mostly express multiple hormone phenotypes at the messenger ribonucleic acid level. Refractoriness to melanocortin-3 receptor blockade in the lacto-somatotroph lineage.
    Roudbaraki M; Lorsignol A; Langouche L; Callewaert G; Vankelecom H; Denef C
    Endocrinology; 1999 Oct; 140(10):4874-85. PubMed ID: 10499547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinate regulation of peptide acetyltransferase activity and proopiomelanocortin gene expression in the intermediate lobe of the rat pituitary.
    Millington WR; O'Donohue TL; Chappell MC; Roberts JL; Mueller GP
    Endocrinology; 1986 May; 118(5):2024-33. PubMed ID: 2938933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.