These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9048888)

  • 21. Evidence for a substrate-binding subsite in ribonuclease T1. Crystal structure of the complex with two guanosines, and model building of the complex with the substrate guanylyl-3',5'-guanosine.
    Lenz A; Cordes F; Heinemann U; Saenger W
    J Biol Chem; 1991 Apr; 266(12):7661-7. PubMed ID: 1902225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The structure and function of ribonuclease T1. XX. Specific inactivation of ribonuclease T1 by reaction with tosylglycolate.
    Oshima H; Takahashi K
    J Biochem; 1976 Dec; 80(6):1259-65. PubMed ID: 14119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of 8-bromoguanylic acid to ribonuclease T1 as studied by absorption and circular dichroism spectroscopy.
    Yoshida H; Kanae H
    Biochem Biophys Res Commun; 1983 Jul; 114(1):88-92. PubMed ID: 6309175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spermine stabilization of folded ribonuclease T1.
    Walz FG; Kitareewan S
    J Biol Chem; 1990 May; 265(13):7127-37. PubMed ID: 1970567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates.
    Steyaert J; Haikal AF; Wyns L
    Proteins; 1994 Apr; 18(4):318-23. PubMed ID: 8208724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trp59 to Tyr substitution enhances the catalytic activity of RNase T1 and of the Tyr to Trp variants in positions 24, 42 and 45.
    Grunert HP; Landt O; Zirpel-Giesebrecht M; Backmann J; Heinemann U; Saenger W; Hahn U
    Protein Eng; 1993 Sep; 6(7):739-44. PubMed ID: 8248097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative binding free energy calculations of inhibitors to two mutants (Glu46----Ala/Gln) of ribonuclease T1 using molecular dynamics/free energy perturbation approaches.
    Hirono S; Kollman PA
    Protein Eng; 1991 Feb; 4(3):233-43. PubMed ID: 1649996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steady-state kinetic studies of the inhibitory action of Zn2+ on ribonuclease T1 catalysis.
    Itaya M; Inoue Y
    Biochem J; 1982 Nov; 207(2):357-62. PubMed ID: 6818948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer modeling studies on the binding of 2',5'-linked dinucleoside phosphates to ribonuclease T1-influence of subsite interactions on the substrate specificity.
    Balaji PV; Saenger W; Rao VS
    J Biomol Struct Dyn; 1993 Apr; 10(5):891-903. PubMed ID: 8391269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modes of mononucleotide binding to ribonuclease T1.
    Georgalis Y; Zouni A; Zielenkiewicz P; Holzwarth JF; Clarke R; Hahn U; Saenger W
    J Biol Chem; 1992 May; 267(15):10323-30. PubMed ID: 1316897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A two-binding-site kinetic model for the ribonuclease-T1-catalysed transesterification of dinucleoside phosphate substrates.
    Steyaert J; Engelborghs Y
    Eur J Biochem; 1995 Oct; 233(1):140-4. PubMed ID: 7588737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen-tritium exchange and nuclear magnetic resonance titrations of the histidine residues in ribonuclease St and analysis of their microenvironment.
    Miyamoto K; Arata Y; Matsuo H; Narita K
    J Biochem; 1981 Jan; 89(1):49-59. PubMed ID: 6260763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Specificity of the degradation and synthesis of dinucleoside monophosphates by RNAase C2 of Asp. clavatus].
    Bezborodova SI; Guliaeva VI; Morozova VG
    Prikl Biokhim Mikrobiol; 1975; 11(1):9-13. PubMed ID: 236554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of vanadate (V) to ribonuclease-T1 and inosine, investigated by 51V NMR spectroscopy.
    Rehder D; Holst H; Quaas R; Hinrichs W; Hahn U; Saenger W
    J Inorg Biochem; 1989 Oct; 37(2):141-50. PubMed ID: 2513377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical modification of ribonuclease T1 with ozone.
    Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1978 Mar; 83(3):771-81. PubMed ID: 417075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribonuclease T1 cleaves RNA after guanosines within single-stranded gaps of any length.
    Greiner-Stöffele T; Foerster HH; Hahn U
    Nucleosides Nucleotides Nucleic Acids; 2000 Jul; 19(7):1101-9. PubMed ID: 10999250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure and function of ribonuclease T1. XXI. Modification of histidine residues in ribonuclease T1 with iodoacetamide.
    Takahashi K
    J Biochem; 1976 Dec; 80(6):1267-75. PubMed ID: 14120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New thermodynamic studies on ribonuclease A at low pH.
    Chun PW
    J Biol Chem; 1995 Jun; 270(23):13925-31. PubMed ID: 7775452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNase-stable RNA: conformational parameters of the nucleic acid backbone for binding to RNase T1.
    Greiner-Stöffele T; Förster HH; Hofmann HJ; Hahn U
    Biol Chem; 2001 Jul; 382(7):1007-17. PubMed ID: 11530931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.