BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9048908)

  • 1. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1997 Feb; 1337(2):302-10. PubMed ID: 9048908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the substrate specificity for lipases. A CoMFA approach for predicting the hydrolysis rates of 2-arylpropionic esters catalyzed by Candida rugosa lipase.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1996 Aug; 1296(1):121-6. PubMed ID: 8765237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase.
    Manetti F; Mileto D; Corelli F; Soro S; Palocci C; Cernia E; D'Acquarica I; Lotti M; Alberghina L; Botta M
    Biochim Biophys Acta; 2000 Nov; 1543(1):146-58. PubMed ID: 11087950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic resolution of profens by enantioselective esterification catalyzed by Candida antarctica and Candida rugosa lipases.
    Sikora A; Siódmiak T; Marszałł MP
    Chirality; 2014 Oct; 26(10):663-9. PubMed ID: 25080075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity.
    Holmquist M; Martinelle M; Berglund P; Clausen IG; Patkar S; Svendsen A; Hult K
    J Protein Chem; 1993 Dec; 12(6):749-57. PubMed ID: 8136025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase.
    Grochulski P; Bouthillier F; Kazlauskas RJ; Serreqi AN; Schrag JD; Ziomek E; Cygler M
    Biochemistry; 1994 Mar; 33(12):3494-500. PubMed ID: 8142346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study.
    Nini L; Sarda L; Comeau LC; Boitard E; Dubès JP; Chahinian H
    Biochim Biophys Acta; 2001 Nov; 1534(1):34-44. PubMed ID: 11750885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current progress in crystallographic studies of new lipases from filamentous fungi.
    Derewenda U; Swenson L; Green R; Wei Y; Yamaguchi S; Joerger R; Haas MJ; Derewenda ZS
    Protein Eng; 1994 Apr; 7(4):551-7. PubMed ID: 8029211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulations of enantioselective ester hydrolyses catalyzed by Pseudomonas cepacia lipase.
    Tafi A; van Almsick A; Corelli F; Crusco M; Laumen KE; Schneider MP; Botta M
    J Org Chem; 2000 Jun; 65(12):3659-65. PubMed ID: 10864749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative kinetic study of lipases A and B from Candida rugosa in the hydrolysis of lipid p-nitrophenyl esters in mixed micelles with Triton X-100.
    Redondo O; Herrero A; Bello JF; Roig MG; Calvo MV; Plou FJ; Burguillo FJ
    Biochim Biophys Acta; 1995 Jan; 1243(1):15-24. PubMed ID: 7827103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and conformational flexibility of Candida rugosa lipase.
    Cygler M; Schrag JD
    Biochim Biophys Acta; 1999 Nov; 1441(2-3):205-14. PubMed ID: 10570248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase.
    Holmquist M; Norin M; Hult K
    Lipids; 1993 Aug; 28(8):721-6. PubMed ID: 8377587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of lipase-catalysed hydrolysis of naproxen methyl ester: use of NMR spectroscopy methods to study substrate-enzyme interaction.
    Cernia E; Delfini M; Di Cocco E; Palocci C; Soro S
    Bioorg Chem; 2002 Aug; 30(4):276-84. PubMed ID: 12392706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters.
    Ozyilmaz E; Etci K; Sezgin M
    Prep Biochem Biotechnol; 2018; 48(10):887-897. PubMed ID: 30296382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Rhizomucor miehei and Candida rugosa lipases by D-glucose in esterification between L-alanine and D-glucose.
    Somashekar BR; Lohith K; Manohar B; Divakar S
    J Biosci Bioeng; 2007 Feb; 103(2):122-8. PubMed ID: 17368393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomy of lipase binding sites: the scissile fatty acid binding site.
    Pleiss J; Fischer M; Schmid RD
    Chem Phys Lipids; 1998 Jun; 93(1-2):67-80. PubMed ID: 9720251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acyl chain length and branching on the enantioselectivity of Candida rugosa lipase in the kinetic resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine 3,5-diesters.
    Sobolev A; Franssen MC; Vigante B; Cekavicus B; Zhalubovskis R; Kooijman H; Spek AL; Duburs G; de Groot A
    J Org Chem; 2002 Jan; 67(2):401-10. PubMed ID: 11798310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.