These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 9048910)
1. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin. Kocha T; Yamaguchi M; Ohtaki H; Fukuda T; Aoyagi T Biochim Biophys Acta; 1997 Feb; 1337(2):319-26. PubMed ID: 9048910 [TBL] [Abstract][Full Text] [Related]
2. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II). Gutteridge JM; Maidt L; Poyer L Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392 [TBL] [Abstract][Full Text] [Related]
3. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species. Sandström BE; Svoboda P; Granström M; Harms-Ringdahl M; Candeias LP Free Radic Biol Med; 1997; 23(5):744-53. PubMed ID: 9296451 [TBL] [Abstract][Full Text] [Related]
4. Cu2+-catalyzed oxidative degradation of thyroglobulin. Lee HJ; Sok DE Free Radic Res; 2000 Oct; 33(4):359-68. PubMed ID: 11022845 [TBL] [Abstract][Full Text] [Related]
5. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes. Cederbaum AI; Qureshi A Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725 [TBL] [Abstract][Full Text] [Related]
6. Site-specific and bulk-phase generation of hydroxyl radicals in the presence of cupric ions and thiol compounds. van Steveninck J; van der Zee J; Dubbelman TM Biochem J; 1985 Nov; 232(1):309-11. PubMed ID: 3936485 [TBL] [Abstract][Full Text] [Related]
7. Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry. Urbański NK; Beresewicz A Acta Biochim Pol; 2000; 47(4):951-62. PubMed ID: 11996118 [TBL] [Abstract][Full Text] [Related]
8. The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Netto LE; Stadtman ER Arch Biochem Biophys; 1996 Sep; 333(1):233-42. PubMed ID: 8806776 [TBL] [Abstract][Full Text] [Related]
9. Free-radical generation by copper ions and hydrogen peroxide. Stimulation by Hepes buffer. Simpson JA; Cheeseman KH; Smith SE; Dean RT Biochem J; 1988 Sep; 254(2):519-23. PubMed ID: 3178771 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical vs. radical-induced oxidation. Sigler K; Gille G; Vacata V; Stadler N; Höfer M Folia Microbiol (Praha); 1998; 43(4):361-7. PubMed ID: 9821289 [TBL] [Abstract][Full Text] [Related]
11. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Aruoma OI; Halliwell B; Gajewski E; Dizdaroglu M Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):601-4. PubMed ID: 1899997 [TBL] [Abstract][Full Text] [Related]
12. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Gutteridge JM; Wilkins S Biochim Biophys Acta; 1983 Aug; 759(1-2):38-41. PubMed ID: 6192847 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence. Winterbourn CC; Sutton HC Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604 [TBL] [Abstract][Full Text] [Related]
15. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Gutteridge JM Biochem J; 1987 May; 243(3):709-14. PubMed ID: 3117032 [TBL] [Abstract][Full Text] [Related]
16. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation. Fong KL; McCay PB; Poyer JL Chem Biol Interact; 1976 Sep; 15(1):77-89. PubMed ID: 183903 [TBL] [Abstract][Full Text] [Related]
17. Catecholamines enhance dihydrolipoamide dehydrogenase inactivation by the copper Fenton system. Enzyme protection by copper chelators. Correa JG; Stoppani AO Free Radic Res; 1996 Apr; 24(4):311-22. PubMed ID: 8731015 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles. Vianello A; Zancani M; Macrí F Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562 [TBL] [Abstract][Full Text] [Related]
19. Oxidative deamination by hydrogen peroxide in the presence of metals. Akagawa M; Suyama K Free Radic Res; 2002 Jan; 36(1):13-21. PubMed ID: 11999699 [TBL] [Abstract][Full Text] [Related]
20. Oxidative inactivation of gastric peroxidase by site-specific generation of hydroxyl radical and its role in stress-induced gastric ulceration. Das D; Bandyopadhyay D; Banerjee RK Free Radic Biol Med; 1998 Feb; 24(3):460-9. PubMed ID: 9438559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]