These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9049023)

  • 1. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures.
    Loubiere P; Salou P; Leroy MJ; Lindley ND; Pareilleux A
    J Bacteriol; 1992 Aug; 174(16):5302-8. PubMed ID: 1644757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of scalar protons in metabolic energy generation in lactic acid bacteria.
    Lolkema JS; Poolman B; Konings WN
    J Bioenerg Biomembr; 1995 Aug; 27(4):467-73. PubMed ID: 8595982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos.
    Salema M; Poolman B; Lolkema JS; Dias MC; Konings WN
    Eur J Biochem; 1994 Oct; 225(1):289-95. PubMed ID: 7925448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos.
    Ramos A; Poolman B; Santos H; Lolkema JS; Konings WN
    J Bacteriol; 1994 Aug; 176(16):4899-905. PubMed ID: 8051003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ABC transporter with a secondary-active multidrug translocator domain.
    Venter H; Shilling RA; Velamakanni S; Balakrishnan L; Van Veen HW
    Nature; 2003 Dec; 426(6968):866-70. PubMed ID: 14685244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni).
    Salema M; Capucho I; Poolman B; San Romão MV; Dias MC
    J Bacteriol; 1996 Sep; 178(18):5537-9. PubMed ID: 8808948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidrug resistance in lactic acid bacteria: molecular mechanisms and clinical relevance.
    van Veen HW; Margolles A; Putman M; Sakamoto K; Konings WN
    Antonie Van Leeuwenhoek; 1999; 76(1-4):347-52. PubMed ID: 10532389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of pH-sensitive fluorescent dyes in lactic acid bacteria reveals distinct extrusion systems for unmodified and conjugated dyes.
    Glaasker E; Konings WN; Poolman B
    Mol Membr Biol; 1996; 13(3):173-81. PubMed ID: 8905646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton motive force-dependent Hoechst 33342 transport by the ABC transporter LmrA of Lactococcus lactis.
    van den Berg van Saparoea HB; Lubelski J; van Merkerk R; Mazurkiewicz PS; Driessen AJ
    Biochemistry; 2005 Dec; 44(51):16931-8. PubMed ID: 16363806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics of lactose utilization in lactic acid bacteria.
    de Vos WM; Vaughan EE
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):217-37. PubMed ID: 7946468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family.
    Bandell M; Ansanay V; Rachidi N; Dequin S; Lolkema JS
    J Biol Chem; 1997 Jul; 272(29):18140-6. PubMed ID: 9218448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell membrane and the struggle for life of lactic acid bacteria.
    Konings WN
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):3-27. PubMed ID: 12369197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis.
    Bolhuis H; Molenaar D; Poelarends G; van Veen HW; Poolman B; Driessen AJ; Konings WN
    J Bacteriol; 1994 Nov; 176(22):6957-64. PubMed ID: 7961458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidrug transporters in lactic acid bacteria.
    Mazurkiewicz P; Sakamoto K; Poelarends GJ; Konings WN
    Mini Rev Med Chem; 2005 Feb; 5(2):173-81. PubMed ID: 15720287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cultivation conditions on folate production by lactic acid bacteria.
    Sybesma W; Starrenburg M; Tijsseling L; Hoefnagel MH; Hugenholtz J
    Appl Environ Microbiol; 2003 Aug; 69(8):4542-8. PubMed ID: 12902240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides.
    Marty-Teysset C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Biol Chem; 1995 Oct; 270(43):25370-6. PubMed ID: 7592702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transduction in lactic acid bacteria.
    Poolman B
    FEMS Microbiol Rev; 1993 Sep; 12(1-3):125-47. PubMed ID: 8398212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.