BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9049307)

  • 1. The role of branchpoint-3' splice site spacing and interaction between intron terminal nucleotides in 3' splice site selection in Saccharomyces cerevisiae.
    Luukkonen BG; Séraphin B
    EMBO J; 1997 Feb; 16(4):779-92. PubMed ID: 9049307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact on splicing in
    Perchlik M; Sasse A; Mostafavi S; Fields S; Cuperus JT
    RNA; 2023 Dec; 30(1):52-67. PubMed ID: 37879864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splicing of the meiosis-specific HOP2 transcript utilizes a unique 5' splice site.
    Leu JY; Roeder GS
    Mol Cell Biol; 1999 Dec; 19(12):7933-43. PubMed ID: 10567519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of splice sites in plant pre-mRNA from sequence properties.
    Brendel V; Kleffe J; Carle-Urioste JC; Walbot V
    J Mol Biol; 1998 Feb; 276(1):85-104. PubMed ID: 9514728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. U-rich tracts enhance 3' splice site recognition in plant nuclei.
    Baynton CE; Potthoff SJ; McCullough AJ; Schuler MA
    Plant J; 1996 Oct; 10(4):703-11. PubMed ID: 8893546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism.
    Malygin AA; Parakhnevitch NM; Ivanov AV; Eperon IC; Karpova GG
    Nucleic Acids Res; 2007; 35(19):6414-23. PubMed ID: 17881366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purifying selection against spurious splicing signals contributes to the base composition evolution of the polypyrimidine tract.
    Yıldırım B; Vogl C
    J Evol Biol; 2023 Sep; 36(9):1295-1312. PubMed ID: 37564008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of MYC intron 2 regions that modulate expression.
    Tompkins VS; Xue Z; Peterson JM; Rouse WB; O'Leary CA; Moss WN
    PLoS One; 2024; 19(1):e0296889. PubMed ID: 38236931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved and divergent signals in 5' splice site sequences across fungi, metazoa and plants.
    Beckel MS; Kaufman B; Yanovsky M; Chernomoretz A
    PLoS Comput Biol; 2023 Oct; 19(10):e1011540. PubMed ID: 37831726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak negative and positive selection and the drift load at splice sites.
    Denisov SV; Bazykin GA; Sutormin R; Favorov AV; Mironov AA; Gelfand MS; Kondrashov AS
    Genome Biol Evol; 2014 May; 6(6):1437-47. PubMed ID: 24966225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2.
    Anil AT; Choudhary K; Pandian R; Gupta P; Thakran P; Singh A; Sharma M; Mishra SK
    Nucleic Acids Res; 2022 Sep; 50(17):10000-10014. PubMed ID: 36095128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A broad analysis of splicing regulation in yeast using a large library of synthetic introns.
    Schirman D; Yakhini Z; Pilpel Y; Dahan O
    PLoS Genet; 2021 Sep; 17(9):e1009805. PubMed ID: 34570750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of the human spliceosomes before and after release of the ligated exon.
    Zhang X; Zhan X; Yan C; Zhang W; Liu D; Lei J; Shi Y
    Cell Res; 2019 Apr; 29(4):274-285. PubMed ID: 30728453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spliceosome Profiling Visualizes Operations of a Dynamic RNP at Nucleotide Resolution.
    Burke JE; Longhurst AD; Merkurjev D; Sales-Lee J; Rao B; Moresco JJ; Yates JR; Li JJ; Madhani HD
    Cell; 2018 May; 173(4):1014-1030.e17. PubMed ID: 29727661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postcatalytic spliceosome structure reveals mechanism of 3'-splice site selection.
    Wilkinson ME; Fica SM; Galej WP; Norman CM; Newman AJ; Nagai K
    Science; 2017 Dec; 358(6368):1283-1288. PubMed ID: 29146871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A birth of bipartite exon by intragenic deletion.
    Nozu K; Iijima K; Igarashi T; Yamada S; Kralovicova J; Nozu Y; Yamamura T; Minamikawa S; Morioka I; Ninchoji T; Kaito H; Nakanishi K; Vorechovsky I
    Mol Genet Genomic Med; 2017 May; 5(3):287-294. PubMed ID: 28546999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel spliceosome-mediated trans-splicing can change our view on genome complexity of the divergent eukaryote Giardia intestinalis.
    Kamikawa R; Inagaki Y; Hashimoto T
    Biophys Rev; 2011 Dec; 3(4):193-197. PubMed ID: 28510047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a spliceosome remodelled for exon ligation.
    Fica SM; Oubridge C; Galej WP; Wilkinson ME; Bai XC; Newman AJ; Nagai K
    Nature; 2017 Feb; 542(7641):377-380. PubMed ID: 28076345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast.
    Volanakis A; Passoni M; Hector RD; Shah S; Kilchert C; Granneman S; Vasiljeva L
    Genes Dev; 2013 Sep; 27(18):2025-38. PubMed ID: 24065768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intronic sequence elements impede exon ligation and trigger a discard pathway that yields functional telomerase RNA in fission yeast.
    Kannan R; Hartnett S; Voelker RB; Berglund JA; Staley JP; Baumann P
    Genes Dev; 2013 Mar; 27(6):627-38. PubMed ID: 23468430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.