These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9049600)

  • 61. Electrochemical and electrophysiological characterization of neurotransmitter release from sympathetic nerves supplying rat mesenteric arteries.
    Dunn WR; Brock JA; Hardy TA
    Br J Pharmacol; 1999 Sep; 128(1):174-80. PubMed ID: 10498849
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spike generating smooth muscle cells in mesenteric artery of rats.
    Yamaguchi H; Jensen PE
    Pflugers Arch; 1993 Oct; 425(1-2):187-9. PubMed ID: 8272379
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pinacidil inhibits neuromuscular transmission indirectly in the guinea-pig and rabbit mesenteric arteries.
    Nakashima M; Li Y; Seki N; Kuriyama H
    Br J Pharmacol; 1990 Nov; 101(3):581-6. PubMed ID: 1963799
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inhibition of neuropeptide Y-induced augmentation of noradrenaline-induced vasoconstriction by D-myo-inositol 1,2,6-trisphosphate in the rat mesenteric arterial bed.
    Ralevic V; Edvinsson L; Burnstock G
    Acta Physiol Scand; 1994 Jul; 151(3):309-17. PubMed ID: 7976403
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nonadrenergic nature of prazosin-resistant, sympathetic contraction in the dog mesenteric artery.
    Muramatsu I; Kigoshi S; Oshita M
    J Pharmacol Exp Ther; 1984 May; 229(2):532-8. PubMed ID: 6425493
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrical field stimulation of rat mesenteric small arteries: force and free cytosolic calcium during neurogenic contractions and mechanisms of non-neurogenic relaxations.
    Jensen PE
    Acta Physiol Scand; 1995 Mar; 153(3):289-300. PubMed ID: 7625182
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanisms for perivascular adipose tissue-mediated potentiation of vascular contraction to perivascular neuronal stimulation: the role of adipocyte-derived angiotensin II.
    Lu C; Su LY; Lee RM; Gao YJ
    Eur J Pharmacol; 2010 May; 634(1-3):107-12. PubMed ID: 20156432
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Vascular effects of tetramethylpyrazine: direct interaction with smooth muscle alpha-adrenoceptors.
    Kwan CY; Gaspar V; Shi AG; Wang ZL; Chen MC; Ohta A; Cragoe EJ; Daniel EE
    Eur J Pharmacol; 1991 May; 198(1):15-21. PubMed ID: 1680713
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Involvement of T-type calcium channels in excitatory junction potentials in rat resistance mesenteric arteries.
    Xi Q; Ziogas J; Roberts JA; Evans RJ; Angus JA
    Br J Pharmacol; 2002 Nov; 137(6):805-12. PubMed ID: 12411411
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrophysiological comparison of the effects of MCI-154 on smooth muscles between mesenteric artery and vein of dogs.
    Hashitani H; Chen G; Ono H; Seki N; Li Y; Nagao T; Suzuki H
    Gen Pharmacol; 1993 Mar; 24(2):333-40. PubMed ID: 8482518
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Alpha 1-adrenoceptors mediate the responses to BHT-920 and rauwolscine in dog mesenteric artery after partial depolarization by KCl.
    Guan YY; Chen KM; Sun JJ
    Eur J Pharmacol; 1991 Aug; 200(2-3):283-7. PubMed ID: 1685994
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence for ATP as a cotransmitter in dog mesenteric artery.
    Machaly M; Dalziel HH; Sneddon P
    Eur J Pharmacol; 1988 Feb; 147(1):83-91. PubMed ID: 2897309
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery.
    von Kügelgen I; Starke K
    J Physiol; 1985 Oct; 367():435-55. PubMed ID: 2865364
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Autoregulation of neuromuscular transmission in the guinea-pig saphenous artery.
    Fujioka M; Cheung DW
    Eur J Pharmacol; 1987 Jul; 139(2):147-53. PubMed ID: 2820758
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanisms of the bepridil-induced vasodilation of the rabbit mesenteric artery.
    Suzuki H; Itoh T; Kuriyama H
    J Pharmacol Exp Ther; 1985 Dec; 235(3):749-56. PubMed ID: 3878404
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of 2-nicotinamidoethyl nitrate (nicorandil; SG-75) and its derivative on smooth muscle cells of the canine mesenteric artery.
    Inoue T; Kanmura Y; Fujisawa K; Itoh T; Kuriyama H
    J Pharmacol Exp Ther; 1984 Jun; 229(3):793-802. PubMed ID: 6233418
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cholera toxin and Gs protein modulation of synaptic transmission in guinea pig mesenteric artery.
    Nozaki M; Sperelakis N
    Eur J Pharmacol; 1991 May; 197(1):57-62. PubMed ID: 1654261
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Differential Contribution of Nerve-Derived Noradrenaline to High K
    Ishida H; Saito SY; Hishinuma E; Ishikawa T
    Biol Pharm Bull; 2017; 40(1):56-60. PubMed ID: 28049949
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of adrenoceptor agonists and antagonists on smooth muscle cells and neuromuscular transmission in the guinea-pig renal artery and vein.
    Makita Y
    Br J Pharmacol; 1983 Dec; 80(4):671-9. PubMed ID: 6100844
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nerve evoked P2X receptor contractions of rat mesenteric arteries; dependence on vessel size and lack of role of L-type calcium channels and calcium induced calcium release.
    Gitterman DP; Evans RJ
    Br J Pharmacol; 2001 Mar; 132(6):1201-8. PubMed ID: 11250870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.