These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 9049757)
1. Effect of endurance exercise training on muscle glycogen supercompensation in rats. Nakatani A; Han DH; Hansen PA; Nolte LA; Host HH; Hickner RC; Holloszy JO J Appl Physiol (1985); 1997 Feb; 82(2):711-5. PubMed ID: 9049757 [TBL] [Abstract][Full Text] [Related]
2. Glycogen supercompensation masks the effect of a traininginduced increase in GLUT-4 on muscle glucose transport. Host HH; Hansen PA; Nolte LA; Chen MM; Holloszy JO J Appl Physiol (1985); 1998 Jul; 85(1):133-8. PubMed ID: 9655766 [TBL] [Abstract][Full Text] [Related]
3. The effect of high-intensity intermittent swimming on post-exercise glycogen supercompensation in rat skeletal muscle. Sano A; Koshinaka K; Abe N; Morifuji M; Koga J; Kawasaki E; Kawanaka K J Physiol Sci; 2012 Jan; 62(1):1-9. PubMed ID: 21983750 [TBL] [Abstract][Full Text] [Related]
4. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise. Garcia-Roves PM; Han DH; Song Z; Jones TE; Hucker KA; Holloszy JO Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E729-36. PubMed ID: 12799316 [TBL] [Abstract][Full Text] [Related]
5. Effects of endurance exercise training on muscle glycogen accumulation in humans. Greiwe JS; Hickner RC; Hansen PA; Racette SB; Chen MM; Holloszy JO J Appl Physiol (1985); 1999 Jul; 87(1):222-6. PubMed ID: 10409578 [TBL] [Abstract][Full Text] [Related]
6. Rapid reversal of adaptive increases in muscle GLUT-4 and glucose transport capacity after training cessation. Host HH; Hansen PA; Nolte LA; Chen MM; Holloszy JO J Appl Physiol (1985); 1998 Mar; 84(3):798-802. PubMed ID: 9480935 [TBL] [Abstract][Full Text] [Related]
7. The post-exercise glycogen recovery in tissues of trained rats. Górski J; Palka P; Puch U; Kiczka K Acta Physiol Pol; 1976; 27(1):47-53. PubMed ID: 1274602 [TBL] [Abstract][Full Text] [Related]
8. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. Terada S; Yokozeki T; Kawanaka K; Ogawa K; Higuchi M; Ezaki O; Tabata I J Appl Physiol (1985); 2001 Jun; 90(6):2019-24. PubMed ID: 11356760 [TBL] [Abstract][Full Text] [Related]
9. Enlargement glycogen store in rat liver and muscle by fructose-diet intake and exercise training. Murakami T; Shimomura Y; Fujitsuka N; Sokabe M; Okamura K; Sakamoto S J Appl Physiol (1985); 1997 Mar; 82(3):772-5. PubMed ID: 9074962 [TBL] [Abstract][Full Text] [Related]
10. Enhanced skeletal muscle glycogen repletion after endurance exercise is associated with higher plasma insulin and skeletal muscle hexokinase 2 protein levels in mice: comparison of level running and downhill running model. Takahashi Y; Sarkar J; Yamada J; Matsunaga Y; Nonaka Y; Banjo M; Sakaguchi R; Shinya T; Hatta H J Physiol Biochem; 2021 Aug; 77(3):469-480. PubMed ID: 33765231 [TBL] [Abstract][Full Text] [Related]
11. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Ploug T; Stallknecht BM; Pedersen O; Kahn BB; Ohkuwa T; Vinten J; Galbo H Am J Physiol; 1990 Dec; 259(6 Pt 1):E778-86. PubMed ID: 2175551 [TBL] [Abstract][Full Text] [Related]
12. Exercise training and glucose uptake by skeletal muscle in rats. Ivy JL; Young JC; McLane JA; Fell RD; Holloszy JO J Appl Physiol Respir Environ Exerc Physiol; 1983 Nov; 55(5):1393-6. PubMed ID: 6643177 [TBL] [Abstract][Full Text] [Related]
13. More tetanic contractions are required for activating glucose transport maximally in trained muscle. Kawanaka K; Tabata I; Higuchi M J Appl Physiol (1985); 1997 Aug; 83(2):429-33. PubMed ID: 9262437 [TBL] [Abstract][Full Text] [Related]
14. Transient enhancement of GLUT-4 levels in rat epitrochlearis muscle after exercise training. Reynolds TH; Brozinick JT; Larkin LM; Cushman SW J Appl Physiol (1985); 2000 Jun; 88(6):2240-5. PubMed ID: 10846041 [TBL] [Abstract][Full Text] [Related]
15. Glycogen overload by postexercise insulin administration abolished the exercise-induced increase in GLUT4 protein. Chou CH; Tsai YL; Hou CW; Lee HH; Chang WH; Lin TW; Hsu TH; Huang YJ; Kuo CH J Biomed Sci; 2005 Dec; 12(6):991-8. PubMed ID: 16319996 [TBL] [Abstract][Full Text] [Related]
16. Effects of Dietary Fat Restriction on Endurance Training-induced Metabolic Adaptations in Rat Skeletal Muscle. Karasawa T; Kondo S; Fukazawa A; Koike A; Tsutsui M; Terada S J Oleo Sci; 2021 Feb; 70(2):253-262. PubMed ID: 33456007 [TBL] [Abstract][Full Text] [Related]
17. Brain glycogen supercompensation following exhaustive exercise. Matsui T; Ishikawa T; Ito H; Okamoto M; Inoue K; Lee MC; Fujikawa T; Ichitani Y; Kawanaka K; Soya H J Physiol; 2012 Feb; 590(3):607-16. PubMed ID: 22063629 [TBL] [Abstract][Full Text] [Related]
18. Interaction of exercise and diet on GLUT-4 protein and gene expression in Type I and Type II rat skeletal muscle. Lee JS; Bruce CR; Tunstall RJ; Cameron-Smith D; Hugel H; Hawley JA Acta Physiol Scand; 2002 May; 175(1):37-44. PubMed ID: 11982503 [TBL] [Abstract][Full Text] [Related]
19. The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. Morozov VI; Tsyplenkov PV; Golberg ND; Kalinski MI Eur J Appl Physiol; 2006 Aug; 97(6):716-22. PubMed ID: 16791601 [TBL] [Abstract][Full Text] [Related]