BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9050411)

  • 1. Adaptive approach to accurate analysis of small-diameter vessels in cineangiograms.
    Sonka M; Reddy GK; Winniford MD; Collins SM
    IEEE Trans Med Imaging; 1997 Feb; 16(1):87-95. PubMed ID: 9050411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lumen centerline detection in complex coronary angiograms.
    Sonka M; Winniford MD; Zhang X; Collins SM
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):520-8. PubMed ID: 7927371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in two-dimensional quantitative coronary angiographic assessment of bifurcation lesions: improved small lumen diameter detection and automatic reference vessel diameter derivation.
    Girasis C; Schuurbiers JC; Onuma Y; Aben JP; Weijers B; Morel MA; Wentzel JJ; Serruys PW
    EuroIntervention; 2012 Mar; 7(11):1326-35. PubMed ID: 22433196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating coronary arteries in x-ray angiograms.
    Morioka CA; Abbey CK; Eckstein M; Close RA; Whiting JS; LeFree M
    Med Phys; 2000 Oct; 27(10):2438-44. PubMed ID: 11099214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of sharpening filter on vessel diameter measured by quantitative coronary arteriography].
    Arai H; Hosonuma N; Gou M; Ueno T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2002 May; 58(5):694-9. PubMed ID: 12520240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the accuracy and reproducibility of digital three-dimensional coronary artery reconstructions using edge detection or videodensitometry.
    Muhlestein JB; Zhang Q; Parker DJ; Horn SD; Parker DL; Anderson JL
    Comput Biomed Res; 1997 Dec; 30(6):415-26. PubMed ID: 9466833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking.
    Shoujun Z; Jian Y; Yongtian W; Wufan C
    Biomed Eng Online; 2010 Aug; 9():40. PubMed ID: 20727131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated quantitative coronary arteriography: morphologic and physiologic validation in vivo of a rapid digital angiographic method.
    Mancini GB; Simon SB; McGillem MJ; LeFree MT; Friedman HZ; Vogel RA
    Circulation; 1987 Feb; 75(2):452-60. PubMed ID: 3802448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance standards and edge detection with computerized quantitative coronary arteriography. The Lovastatin Restenosis Trial Group.
    Klein JL; Boccuzzi SJ; Treasure CB; Manoukian SV; Vogel RA; Beauman GJ; Fischman D; Savage MP; Weintaub WS
    Am J Cardiol; 1996 Apr; 77(10):815-22. PubMed ID: 8623732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fully automated identification of coronary borders from the tree structure of coronary angiograms.
    Ko CC; Mao CW; Sun YN; Chang SH
    Int J Biomed Comput; 1995 May; 39(2):193-208. PubMed ID: 7672864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous detection of both coronary borders.
    Sonka M; Wilbricht CJ; Fleagle SR; Tadikonda SK; Winniford MD; Collins SM
    IEEE Trans Med Imaging; 1993; 12(3):588-99. PubMed ID: 18218453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability of the Cordis Stabilizer marker guide wire for quantitative coronary angiography calibration: an in vitro and in vivo study.
    Koning G; Hekking E; Kemppainen JS; Richardson GA; Rothman MT; Reiber JH
    Catheter Cardiovasc Interv; 2001 Mar; 52(3):334-41. PubMed ID: 11246248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of catheters and metallic catheter markers as calibration standard for measurement of coronary dimension.
    Leung WH; Demopulos PA; Alderman EL; Sanders W; Stadius ML
    Cathet Cardiovasc Diagn; 1990 Nov; 21(3):148-53. PubMed ID: 2225049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust simultaneous detection of coronary borders in complex images.
    Sonka M; Winniford MD; Collins SM
    IEEE Trans Med Imaging; 1995; 14(1):151-61. PubMed ID: 18215820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High spatial resolution coronary magnetic resonance angiography at 7 T: comparison with low spatial resolution bright blood imaging.
    Bizino MB; Bonetti C; van der Geest RJ; Versluis MJ; Webb AG; Lamb HJ
    Invest Radiol; 2014 May; 49(5):326-30. PubMed ID: 24637588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coronary x-ray angiographic reconstruction and image orientation.
    Sprague K; Drangova M; Lehmann G; Slomka P; Levin D; Chow B; deKemp R
    Med Phys; 2006 Mar; 33(3):707-18. PubMed ID: 16878574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative coronary arteriography: efficient correction of catheter calibrated vessel measurement.
    Fischer F; Wunderlich W; Noring J; Linderer T
    Medinfo; 1995; 8 Pt 1():724. PubMed ID: 8591310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative coronary arteriography on digital flat-panel system.
    Van Herck PL; Gavit L; Gorissen P; Wuyts FL; Claeys MJ; Bosmans JM; Benali K; Vrints CJ
    Catheter Cardiovasc Interv; 2004 Oct; 63(2):192-200. PubMed ID: 15390252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of small motion on the visualization of coronary vessels and lesions in cardiac CT: A simulation study.
    Contijoch F; Stayman JW; McVeigh ER
    Med Phys; 2017 Jul; 44(7):3512-3524. PubMed ID: 28432820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.