BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 9053740)

  • 1. Effects of the putative P-type calcium channel blocker, R,R-(-)-daurisoline on neurotransmitter release.
    Waldmeier PC; Wicki P; Fröstl W; Bittiger H; Feldtrauer JJ; Baumann PA
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Dec; 352(6):670-8. PubMed ID: 9053740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of P-type calcium channels in high potassium-elicited release of neurotransmitters from rat brain slices.
    Kimura M; Yamanishi Y; Hanada T; Kagaya T; Kuwada M; Watanabe T; Katayama K; Nishizawa Y
    Neuroscience; 1995 Jun; 66(3):609-15. PubMed ID: 7644024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium channels involved in the inhibition of acetylcholine release by presynaptic muscarinic receptors in rat striatum.
    Dolezal V; Tucek S
    Br J Pharmacol; 1999 Aug; 127(7):1627-32. PubMed ID: 10455319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation.
    Huston E; Cullen GP; Burley JR; Dolphin AC
    Neuroscience; 1995 Sep; 68(2):465-78. PubMed ID: 7477957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum.
    Hill MP; Brotchie JM
    Br J Pharmacol; 1999 May; 127(1):275-83. PubMed ID: 10369483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM; Lodge D
    Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-activated calcium channels involved in veratridine-evoked [3H]dopamine release in rat striatal slices.
    Dobrev D; Milde AS; Andreas K; Ravens U
    Neuropharmacology; 1998 Aug; 37(8):973-82. PubMed ID: 9833626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum.
    Dobrev D; Milde AS; Andreas K; Ravens U
    Br J Pharmacol; 1999 May; 127(2):576-82. PubMed ID: 10385261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. omega-Agatoxin IVA identifies a single calcium channel subtype which contributes to the potassium-induced release of acetylcholine, 5-hydroxytryptamine, dopamine, gamma-aminobutyric acid and glutamate from rat brain slices.
    Harvey J; Wedley S; Findlay JD; Sidell MR; Pullar IA
    Neuropharmacology; 1996 Apr; 35(4):385-92. PubMed ID: 8793900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of subtype-specific Ca(2+)-antagonists and Ca(2+)-free media on the field stimulation-evoked release of ATP and [3H]acetylcholine from rat habenula slices.
    Sperlágh B; András I; Vizi S
    Neurochem Res; 1997 Aug; 22(8):967-75. PubMed ID: 9239752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
    Rusin KI; Moises HC
    Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine D(2)-like receptors selectively block N-type Ca(2+) channels to reduce GABA release onto rat striatal cholinergic interneurones.
    Momiyama T; Koga E
    J Physiol; 2001 Jun; 533(Pt 2):479-92. PubMed ID: 11389206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ca2+ channel antagonists on striatal dopamine and DOPA release, studied by in vivo microdialysis.
    Okada M; Wada K; Kiryu K; Kawata Y; Mizuno K; Kondo T; Tasaki H; Kaneko S
    Br J Pharmacol; 1998 Mar; 123(5):805-14. PubMed ID: 9535007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx.
    Qian J; Saggau P
    Br J Pharmacol; 1997 Oct; 122(3):511-9. PubMed ID: 9351508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two types of omega-agatoxin IVA-sensitive Ca2+ channels are coupled to adrenaline and noradrenaline release in bovine adrenal chromaffin cells.
    Baltazar G; Ladeira I; Carvalho AP; Duarte EP
    Pflugers Arch; 1997 Sep; 434(5):592-8. PubMed ID: 9242724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the effects of omega-conotoxin GVIA on the responses of voltage-sensitive calcium channels.
    Keith RA; Mangano TJ; Pacheco MA; Salama AI
    J Auton Pharmacol; 1989 Aug; 9(4):243-52. PubMed ID: 2570074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of N- and Q-type Ca2+ channels inhibit K(+)-evoked [3H]acetylcholine release in rat hippocampal slices.
    Saydoff JA; Zaczek R
    Brain Res Bull; 1996; 40(4):283-6. PubMed ID: 8842414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells.
    Villarroya M; De la Fuente MT; López MG; Gandía L; García AG
    Eur J Pharmacol; 1997 Feb; 320(2-3):249-57. PubMed ID: 9059861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of both L- and N-type voltage-dependent Ca2+ channels in KCl- and veratridine-evoked transmitter release from non-adrenergic, non-cholinergic nerves in the rabbit iris sphincter muscle.
    Kageyama M; Fujita H; Nakata K; Shirasawa E
    Naunyn Schmiedebergs Arch Pharmacol; 1997 May; 355(5):638-44. PubMed ID: 9151304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals.
    Vázquez E; Sánchez-Prieto J
    Eur J Neurosci; 1997 Oct; 9(10):2009-18. PubMed ID: 9421162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.