These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9054551)

  • 1. Quantitating tertiary binding energies of 2' OH groups on the P1 duplex of the Tetrahymena ribozyme: intrinsic binding energy in an RNA enzyme.
    Narlikar GJ; Khosla M; Usman N; Herschlag D
    Biochemistry; 1997 Mar; 36(9):2465-77. PubMed ID: 9054551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct demonstration of the catalytic role of binding interactions in an enzymatic reaction.
    Narlikar GJ; Herschlag D
    Biochemistry; 1998 Jul; 37(28):9902-11. PubMed ID: 9665695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ; Bartley LE; Khosla M; Herschlag D
    Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups.
    Pyle AM; Cech TR
    Nature; 1991 Apr; 350(6319):628-31. PubMed ID: 1708111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core.
    Testa SM; Haidaris CG; Gigliotti F; Turner DH
    Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of duplex rigidity for stability and specificity in RNA tertiary structure.
    Narlikar GJ; Bartley LE; Herschlag D
    Biochemistry; 2000 May; 39(20):6183-9. PubMed ID: 10821693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of 2'-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA.
    Herschlag D; Eckstein F; Cech TR
    Biochemistry; 1993 Aug; 32(32):8299-311. PubMed ID: 7688572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic substrate binding by a group II intron ribozyme.
    Qin PZ; Pyle AM
    J Mol Biol; 1999 Aug; 291(1):15-27. PubMed ID: 10438603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme.
    Strobel SA; Ortoleva-Donnelly L
    Chem Biol; 1999 Mar; 6(3):153-65. PubMed ID: 10074469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
    Herschlag D
    Biochemistry; 1992 Feb; 31(5):1386-99. PubMed ID: 1736996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of the 5' leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P.
    Loria A; Pan T
    Biochemistry; 1998 Jul; 37(28):10126-33. PubMed ID: 9665718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence specificity of a group II intron ribozyme: multiple mechanisms for promoting unusually high discrimination against mismatched targets.
    Xiang Q; Qin PZ; Michels WJ; Freeland K; Pyle AM
    Biochemistry; 1998 Mar; 37(11):3839-49. PubMed ID: 9521704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of a local tertiary folding transition in the context of a globally folded RNA.
    Narlikar GJ; Herschlag D
    Nat Struct Biol; 1996 Aug; 3(8):701-10. PubMed ID: 8756329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.