These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9055202)

  • 41. Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3.
    Macara IG; Kuo S; Cantley LC
    J Biol Chem; 1983 Feb; 258(3):1785-92. PubMed ID: 6185490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing the role of metal ions in the mechanism of inositol monophosphatase by site-directed mutagenesis.
    Pollack SJ; Knowles MR; Atack JR; Broughton HB; Ragan CI; Osborne S; McAllister G
    Eur J Biochem; 1993 Oct; 217(1):281-7. PubMed ID: 8223565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and biochemical characterization of Mycobacterium tuberculosis SuhB, an inositol monophosphatase involved in inositol biosynthesis.
    Nigou J; Dover LG; Besra GS
    Biochemistry; 2002 Apr; 41(13):4392-8. PubMed ID: 11914086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Roles of metal ions in the maintenance of the tertiary and quaternary structure of arginase from Saccharomyces cerevisiae.
    Green SM; Ginsburg A; Lewis MS; Hensley P
    J Biol Chem; 1991 Nov; 266(32):21474-81. PubMed ID: 1939179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain myo-inositol monophosphatase: activity of the single subunit in a dimeric enzyme.
    Kwok F; Lo SC; Churchich JE
    Biochem Mol Biol Int; 1994 Feb; 32(2):325-30. PubMed ID: 8019438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain.
    Hallcher LM; Sherman WR
    J Biol Chem; 1980 Nov; 255(22):10896-901. PubMed ID: 6253491
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NADP-malic enzyme from maize leaves: a fluorescence study.
    Drincovich MF; Andreo CS
    Biochem Mol Biol Int; 1995 Aug; 36(6):1287-97. PubMed ID: 8535301
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pyrene-labeled cardiac troponin C. Effect of Ca2+ on monomer and excimer fluorescence in solution and in myofibrils.
    Liou YM; Fuchs F
    Biophys J; 1992 Apr; 61(4):892-901. PubMed ID: 1581502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bovine inositol monophosphatase: development of a continuous fluorescence assay of enzyme activity.
    Gore MG; Greasley PJ; Ragan CI
    J Biochem Biophys Methods; 1992 Aug; 25(1):55-60. PubMed ID: 1331221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemical and molecular properties of lithium-sensitive myo-inositol monophosphatase.
    Parthasarathy L; Vadnal RE; Parthasarathy R; Devi CS
    Life Sci; 1994; 54(16):1127-42. PubMed ID: 8152337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical and kinetic mechanism of the inositol monophosphatase reaction and its inhibition by Li+.
    Leech AP; Baker GR; Shute JK; Cohen MA; Gani D
    Eur J Biochem; 1993 Mar; 212(3):693-704. PubMed ID: 8385008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fluorimetric probes of the individual and competitive binding of 1-anilinonaphthalene-8-sulfonate, eosine and fluorescene to bovine serum albumin.
    Pal MK; Patra SK
    Indian J Biochem Biophys; 1994 Apr; 31(2):109-14. PubMed ID: 7523280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reappraisal of the binding processes of N-(3-pyrene)maleimide as a fluorescent probe of proteins.
    Lux B; Gérard D
    J Biol Chem; 1981 Feb; 256(4):1767-71. PubMed ID: 7462222
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a continuous coupled enzymatic assay for myo-inositol monophosphatase.
    Kwok F; Lo SC
    J Biochem Biophys Methods; 1994 Sep; 29(2):173-8. PubMed ID: 7836662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating the role of metal ions in the catalytic mechanism of the yeast RNA triphosphatase.
    Bisaillon M; Bougie I
    J Biol Chem; 2003 Sep; 278(36):33963-71. PubMed ID: 12819229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the tautomeric form of formycin A in its complex with Escherichia coli purine nucleoside phosphorylase based on the effect of enzyme-ligand binding on fluorescence and phosphorescence.
    Włodarczyk J; Stoychev Galitonov G; Kierdaszuk B
    Eur Biophys J; 2004 Aug; 33(5):377-85. PubMed ID: 14655027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy transfer between terbium (III) and cobalt (II) in thermolysin: a new class of metal--metal distance probes.
    Horrocks WD; Holmquist B; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4764-8. PubMed ID: 1061067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stoichiometry and dynamic interaction of metal ion activators with calcineurin phosphatase.
    Pallen CJ; Wang JH
    J Biol Chem; 1986 Dec; 261(34):16115-20. PubMed ID: 3023342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The distance separating Cys-10 from the high-affinity metal binding site in actin.
    Miki M; Barden JA; dos Remedios CG
    Biochem Int; 1986 Jun; 12(6):807-13. PubMed ID: 3741444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The temperature dependence of the inositol monophosphatase Km correlates with accumulation of di-myo-inositol 1,1'-phosphate in Archaeoglobus fulgidus.
    Wang YK; Morgan A; Stieglitz K; Stec B; Thompson B; Miller SJ; Roberts MF
    Biochemistry; 2006 Mar; 45(10):3307-14. PubMed ID: 16519525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.