These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9055362)

  • 1. Mechanical evaluation of cross-link designs in rigid pedicle screw systems.
    Dick JC; Zdeblick TA; Bartel BD; Kunz DN
    Spine (Phila Pa 1976); 1997 Feb; 22(4):370-5. PubMed ID: 9055362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis.
    Brodke DS; Bachus KN; Mohr RA; Nguyen BK
    Spine J; 2001; 1(5):373-9. PubMed ID: 14588318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants.
    Korovessis P; Baikousis A; Deligianni D; Mysirlis Y; Soucacos P
    J Spinal Disord; 2001 Apr; 14(2):109-17. PubMed ID: 11285422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stiffness of segmental versus nonsegmental pedicle screw constructs: the effect of cross-links.
    Hart R; Hettwer W; Liu Q; Prem S
    Spine (Phila Pa 1976); 2006 Jan; 31(2):E35-8. PubMed ID: 16418622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical comparison of lumbosacral fixation using Luque-Galveston and Colorado II sacropelvic fixation: advantage of using locked proximal fixation.
    Early S; Mahar A; Oka R; Newton P
    Spine (Phila Pa 1976); 2005 Jun; 30(12):1396-401. PubMed ID: 15959368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factor analysis of the effectiveness of transfixation and rod characteristics on the TSRH screw-rod instrumentation.
    Deligianni D; Korovessis P; Baikousis A; Misirlis Y
    J Spinal Disord; 2000 Feb; 13(1):50-7. PubMed ID: 10710151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation.
    Lim TH; Kim JG; Fujiwara A; Yoon TT; Lee SC; Ha JW; An HS
    Spine (Phila Pa 1976); 2001 Nov; 26(22):2498-503. PubMed ID: 11707718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical comparison evaluating the use of intermediate screws and cross-linkage in lumbar pedicle fixation.
    Dick JC; Jones MP; Zdeblick TA; Kunz DN; Horton WC
    J Spinal Disord; 1994 Oct; 7(5):402-7. PubMed ID: 7819640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torsional rigidity of scoliosis constructs.
    Wood KB; Wentorf FA; Ogilvie JW; Kim KT
    Spine (Phila Pa 1976); 2000 Aug; 25(15):1893-8. PubMed ID: 10908931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of pedicle and lateral mass screw construct stiffnesses at the cervicothoracic junction: a biomechanical study.
    Rhee JM; Kraiwattanapong C; Hutton WC
    Spine (Phila Pa 1976); 2005 Nov; 30(21):E636-40. PubMed ID: 16261101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torsional stability of cross-link configurations: a biomechanical analysis.
    Valdevit A; Kambic HE; McLain RF
    Spine J; 2005; 5(4):441-5. PubMed ID: 16106560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of four- versus six-screw constructs for short-segment pedicle screw and rod instrumentation of unstable thoracolumbar fractures.
    Norton RP; Milne EL; Kaimrajh DN; Eismont FJ; Latta LL; Williams SK
    Spine J; 2014 Aug; 14(8):1734-9. PubMed ID: 24462814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation.
    Chiba M; McLain RF; Yerby SA; Moseley TA; Smith TS; Benson DR
    Spine (Phila Pa 1976); 1996 Feb; 21(3):288-94. PubMed ID: 8742203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and clinical evaluation of a novel technique for surgical repair of spondylolysis in adolescents.
    Ulibarri JA; Anderson PA; Escarcega T; Mann D; Noonan KJ
    Spine (Phila Pa 1976); 2006 Aug; 31(18):2067-72. PubMed ID: 16915090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screw omission and the stability of posterior pedicle screw constructs for short-segment stabilization.
    Margulies JY; Casar RS; Neuwirth MG; Margulies SD; Kummer FJ
    J Spinal Disord; 1997 Jun; 10(3):240-5. PubMed ID: 9213281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis.
    Slucky AV; Brodke DS; Bachus KN; Droge JA; Braun JT
    Spine J; 2006; 6(1):78-85. PubMed ID: 16413452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion.
    Tencer AF; Hampton D; Eddy S
    Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization.
    Bozkuş H; Senoğlu M; Baek S; Sawa AG; Ozer AF; Sonntag VK; Crawford NR
    J Neurosurg Spine; 2010 Feb; 12(2):183-9. PubMed ID: 20121354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.