BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9055431)

  • 1. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria.
    Johansen C; Verheul A; Gram L; Gill T; Abee T
    Appl Environ Microbiol; 1997 Mar; 63(3):1155-9. PubMed ID: 9055431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubility and antimicrobial efficacy of protamine on Listeria monocytogenes and Escherichia coli as influenced by pH.
    Hansen LT; Gill TA
    J Appl Microbiol; 2000 Jun; 88(6):1049-55. PubMed ID: 10849181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cell morphology of Listeria monocytogenes and Shewanella putrefaciens resulting from the action of protamine.
    Johansen C; Gill T; Gram L
    Appl Environ Microbiol; 1996 Mar; 62(3):1058-64. PubMed ID: 8975598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of foodborne bacteria by native and modified protamine: importance of electrostatic interactions.
    Potter R; Truelstrup Hansen L; Gill TA
    Int J Food Microbiol; 2005 Aug; 103(1):23-34. PubMed ID: 16084263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial effect of protamine assayed by impedimetry.
    Johansen C; Gill T; Gram L
    J Appl Bacteriol; 1995 Mar; 78(3):297-303. PubMed ID: 7730206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105.
    Maftah A; Renault D; Vignoles C; Héchard Y; Bressollier P; Ratinaud MH; Cenatiempo Y; Julien R
    J Bacteriol; 1993 May; 175(10):3232-5. PubMed ID: 8491741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated.
    García D; Gómez N; Mañas P; Raso J; Pagán R
    Int J Food Microbiol; 2007 Jan; 113(2):219-27. PubMed ID: 16987561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of protamine with gram-negative bacteria membranes: possible alternative mechanisms of internalization in Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa.
    Pink DA; Hasan FM; Quinn BE; Winterhalter M; Mohan M; Gill TA
    J Pept Sci; 2014 Apr; 20(4):240-50. PubMed ID: 24453038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement of a large K+-uptake capacity and of extracytoplasmic protease activity for protamine resistance of Escherichia coli.
    Stumpe S; Bakker EP
    Arch Microbiol; 1997; 167(2-3):126-36. PubMed ID: 9133319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode of action of an antibacterial peptide, KLKLLLLLKLK-NH2.
    Alvarez-Bravo J; Kurata S; Natori S
    J Biochem; 1995 Jun; 117(6):1312-6. PubMed ID: 7490276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antibacterial action of protamine: evidence for disruption of cytoplasmic membrane energization in Salmonella typhimurium.
    Aspedon A; Groisman EA
    Microbiology (Reading); 1996 Dec; 142 ( Pt 12)():3389-97. PubMed ID: 9004502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins.
    Skerlavaj B; Romeo D; Gennaro R
    Infect Immun; 1990 Nov; 58(11):3724-30. PubMed ID: 2228243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment.
    Garcia-Gonzalez L; Geeraerd AH; Mast J; Briers Y; Elst K; Van Ginneken L; Van Impe JF; Devlieghere F
    Food Microbiol; 2010 Jun; 27(4):541-9. PubMed ID: 20417405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.
    Liu X; Xia W; Jiang Q; Xu Y; Yu P
    J Biosci Bioeng; 2015 Sep; 120(3):335-9. PubMed ID: 25682520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin.
    Winkowski K; Bruno ME; Montville TJ
    Appl Environ Microbiol; 1994 Nov; 60(11):4186-8. PubMed ID: 7993099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the mode of action of 4-ethylphenol on Escherichia coli.
    Hugo WB; Bowen JG
    Microbios; 1973; 8(31):189-97. PubMed ID: 4589868
    [No Abstract]   [Full Text] [Related]  

  • 17. Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA.
    Murdock CA; Matthews KR
    J Appl Microbiol; 2002; 93(5):850-6. PubMed ID: 12392532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular Min oscillations as a single-cell reporter of the action of polycations, protamine, and gentamicin on Escherichia coli.
    Downing BP; Rutenberg AD; Touhami A; Jericho M
    PLoS One; 2009 Sep; 4(9):e7285. PubMed ID: 19789705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Throughput Approach To Identify Compounds That Impair Envelope Integrity in Escherichia coli.
    Baker KR; Jana B; Franzyk H; Guardabassi L
    Antimicrob Agents Chemother; 2016 Oct; 60(10):5995-6002. PubMed ID: 27458225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early and discrete changes in permeability of Escherichia coli and certain other gram-negative bacteria during killing by granulocytes.
    Beckerdite S; Mooney C; Weiss J; Franson R; Elsbach P
    J Exp Med; 1974 Aug; 140(2):396-409. PubMed ID: 4602982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.