These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 9055439)
41. Transfer of phospholipids from fat body to lipophorin in Rhodnius prolixus. Atella GC; Gondim KC; Masuda H Arch Insect Biochem Physiol; 1992; 19(2):133-44. PubMed ID: 11488301 [TBL] [Abstract][Full Text] [Related]
42. Antagonistic effects of energy status on meal size and egg-batch size of Aedes aegypti (Diptera: Culicidae). Mostowy WM; Foster WA J Vector Ecol; 2004 Jun; 29(1):84-93. PubMed ID: 15266745 [TBL] [Abstract][Full Text] [Related]
43. Modulation of larval nutrition affects midgut neutral lipid storage and temporal pattern of transcription factor expression during mosquito metamorphosis. Nishiura JT; Burgos C; Aya S; Goryacheva Y; Lo W J Insect Physiol; 2007 Jan; 53(1):47-58. PubMed ID: 17123540 [TBL] [Abstract][Full Text] [Related]
44. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. Naksathit AT; Scott TW J Am Mosq Control Assoc; 1998 Jun; 14(2):148-52. PubMed ID: 9673914 [TBL] [Abstract][Full Text] [Related]
45. Lipoproteins act as a reusable shuttle for lipid transport in the flying death's-head hawkmoth, Acherontia atropos. Surholt B; Goldberg J; Schulz TK; Beenakkers AM; Van der Horst DJ Biochim Biophys Acta; 1991 Oct; 1086(1):15-21. PubMed ID: 1954241 [TBL] [Abstract][Full Text] [Related]
46. Multiple interactions between insect lipoproteins and fat body cells: extracellular trapping and endocytic trafficking. Dantuma NP; Pijnenburg MA; Diederen JH; Van der Horst DJ J Lipid Res; 1998 Sep; 39(9):1877-88. PubMed ID: 9741701 [TBL] [Abstract][Full Text] [Related]
47. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Zhou G; Pennington JE; Wells MA Insect Biochem Mol Biol; 2004 Sep; 34(9):919-25. PubMed ID: 15350611 [TBL] [Abstract][Full Text] [Related]
48. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. Fernandes L; Briegel H J Vector Ecol; 2005 Jun; 30(1):11-26. PubMed ID: 16007951 [TBL] [Abstract][Full Text] [Related]
49. [The lipid-protein indices of the blood cholesterol transport system in systemic lupus erythematosus]. Alekberova ZS; Popkova TV; Nasonov EL; Reshetniak TM; Ozerova IN; Perova NV Ter Arkh; 1999; 71(5):34-8. PubMed ID: 10399228 [TBL] [Abstract][Full Text] [Related]
50. Population and parity levels of Aedes aegypti collected in Tucson. Hoeck PA; Ramberg FB; Merrill SA; Moll C; Hagedorn HH J Vector Ecol; 2003 Jun; 28(1):65-73. PubMed ID: 12831130 [TBL] [Abstract][Full Text] [Related]
51. [Apolipoprotein E and activity of cholesterol esters transport in type IIA and IIB hyperlipoproteinemia]. Tvorogova MG; Rozhkova TA; Semenova OA; Lupanov VP; Nuraliev EIu ; Kukharchuk VV; Titov VN Ter Arkh; 1997; 69(12):30-3. PubMed ID: 9503530 [TBL] [Abstract][Full Text] [Related]
52. Role of lipophorin in lipid transport to the insect egg. Kawooya JK; Law JH J Biol Chem; 1988 Jun; 263(18):8748-53. PubMed ID: 3379043 [TBL] [Abstract][Full Text] [Related]
53. Effect of particle lipid content on the structure of insect lipophorins. Ryan RO; Kay CM; Oikawa K; Liu H; Bradley R; Scraba DG J Lipid Res; 1992 Jan; 33(1):55-63. PubMed ID: 1552233 [TBL] [Abstract][Full Text] [Related]
54. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Telang A; Frame L; Brown MR J Exp Biol; 2007 Mar; 210(Pt 5):854-64. PubMed ID: 17297145 [TBL] [Abstract][Full Text] [Related]
55. A turbidimetric assay of lipid transfer activity. Singh TK; Blacklock BJ; Wientzek M; Ryan RO Anal Biochem; 1992 Oct; 206(1):137-41. PubMed ID: 1456425 [TBL] [Abstract][Full Text] [Related]
56. Molecular characterization of the VLDL receptor homolog mediating binding of lipophorin in oocyte of the mosquito Aedes aegypti. Cheon HM; Seo SJ; Sun J; Sappington TW; Raikhel AS Insect Biochem Mol Biol; 2001 Jun; 31(8):753-60. PubMed ID: 11378410 [TBL] [Abstract][Full Text] [Related]
57. Lipophorin of female Blattella germanica (L.): characterization and relation to hemolymph titers of juvenile hormone and hydrocarbons. Sevala V; Shu S; Ramaswamy SB; Schal C J Insect Physiol; 1999 May; 45(5):431-441. PubMed ID: 12770326 [TBL] [Abstract][Full Text] [Related]
58. In vivo and in vitro loading of lipid by artificially lipid-depleted lipophorins: evidence for the role of lipophorin as a reusable lipid shuttle. van Heusden MC; van der Horst DJ; Kawooya JK; Law JH J Lipid Res; 1991 Nov; 32(11):1789-94. PubMed ID: 1770298 [TBL] [Abstract][Full Text] [Related]
59. Binding of locust high-density lipophorin to fat body proteins monitored by an enzyme-linked immunosorbant assay. Schulz TK; Van der Horst DJ; Beenakkers AM Biol Chem Hoppe Seyler; 1991 Jan; 372(1):5-12. PubMed ID: 2039606 [TBL] [Abstract][Full Text] [Related]
60. Insect lipid transfer particle can facilitate net vectorial lipid transfer via a carrier-mediated mechanism. Blacklock BJ; Smillie M; Ryan RO J Biol Chem; 1992 Jul; 267(20):14033-7. PubMed ID: 1629202 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]