BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9056085)

  • 1. Tastes, structure and solution properties of D-glucono-1,5-lactone.
    Parke SA; Birch GG; MacDougall DB; Stevens DA
    Chem Senses; 1997 Feb; 22(1):53-65. PubMed ID: 9056085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confirmation of the structure of tetra-O-(tert-butyldimethylsilyl)-D-glucono-1,4-lactone formed by silylation of D-glucono-1,5-lactone.
    Singh J; DiMarco J; Kissick TP; Deshpande P; Gougoutas JZ
    Carbohydr Res; 2002 Mar; 337(6):565-8. PubMed ID: 11890895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and physicochemical properties of an injectable alginate-based hydrogel by the regulated release of divalent ions via the hydrolysis of d-glucono-
    Sun X; Li Z; Cui Z; Wu S; Zhu S; Liang Y; Yang X
    J Biomater Appl; 2020 Feb; 34(7):891-901. PubMed ID: 31684793
    [No Abstract]   [Full Text] [Related]  

  • 4. Gluconic acid, its lactones, and SO(2) binding phenomena in musts from botrytized grapes.
    Barbe JC; De Revel G; Bertrand A
    J Agric Food Chem; 2002 Oct; 50(22):6408-12. PubMed ID: 12381125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of D-glucono-delta-lactone. I. General acid-base catalysis, solvent deuterium isotope effects, and transition state characterization.
    Pocker Y; Green E
    J Am Chem Soc; 1973 Jan; 95(1):113-9. PubMed ID: 4682891
    [No Abstract]   [Full Text] [Related]  

  • 6. Some taste molecules and their solution properties.
    Parke SA; Birch GG; Dijk R
    Chem Senses; 1999 Jun; 24(3):271-9. PubMed ID: 10400445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone as a monomer for the preparation of copolyesters.
    Pinilla IM; Martínez MB; Galbis JA
    Carbohydr Res; 2003 Mar; 338(6):549-55. PubMed ID: 12668111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sucrose and urea on soy hull pectic polysaccharide gel induced by D-glucono-1,5-lactone.
    Liu H; Li Q; Zhu D; Li J; Liu J; Geng P; He Y
    Carbohydr Polym; 2013 Oct; 98(1):542-5. PubMed ID: 23987379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid induced gelation of soymilk, comparison between gels prepared with lactic acid bacteria and glucono-δ-lactone.
    Grygorczyk A; Corredig M
    Food Chem; 2013 Dec; 141(3):1716-21. PubMed ID: 23870883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural effects of oxidation on sugars: glucose as a precursor of gluconolactone and glucuronolactone.
    Parra-Santamaria M; Insausti A; Alonso ER; Basterretxea FJ; Cocinero EJ
    Chem Commun (Camb); 2024 May; 60(40):5302-5305. PubMed ID: 38661549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of Listeria monocytogenes in the presence of gluconic acid and during preparation of cottage cheese curd using gluconic acid.
    el-Shenawy MA; Marth EH
    J Dairy Sci; 1990 Jun; 73(6):1429-38. PubMed ID: 2117028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration dependent effects of dextran on the physical properties of acid milk gels.
    Mende S; Peter M; Bartels K; Dong T; Rohm H; Jaros D
    Carbohydr Polym; 2013 Nov; 98(2):1389-96. PubMed ID: 24053819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of sugar lactones to hemiacetals with lithium triethylborohydride.
    Gonzalez C; Kavoosi S; Sanchez A; Wnuk SF
    Carbohydr Res; 2016 Sep; 432():17-22. PubMed ID: 27341397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the physicochemical, digestion and microstructural characteristics of soy protein gel acidified with lactic acid bacteria, glucono-δ-lactone and organic acid.
    Yang X; Ren Y; Liu H; Huo C; Li L
    Int J Biol Macromol; 2021 Aug; 185():462-470. PubMed ID: 34147525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological properties and permeability of soy protein-stabilised emulsion gels made by acidification with glucono-δ-lactone.
    Li F; Kong X; Zhang C; Hua Y
    J Sci Food Agric; 2011 Sep; 91(12):2186-91. PubMed ID: 21656774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An infrared spectrophotometric study on the interconversion and hydrolysis of D-glucono-gamma- and delta-lactone in deuterium oxide.
    Shimahara K; Takahashi T
    Biochim Biophys Acta; 1970 Mar; 201(3):410-5. PubMed ID: 5437655
    [No Abstract]   [Full Text] [Related]  

  • 17. Stability Study and Identification of Degradation Products of Caffeoylgluconic Acid Derivatives from Fructus Euodiae.
    Yu H; Yang J; Ding J; He Y; Jiang Z; Chai X; Wang Y
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30096766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRANSFORMATION AND HYDROLYSIS OF D-GLUCONO-GAMMA AND DELTA-LACTONE.
    TAKAHASHI T; MITSUMOTO M
    Nature; 1963 Aug; 199():765-7. PubMed ID: 14071185
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulation of the clinically accessible gelation time using glucono-d-lactone and pyridoxal 5'-phosphate for long-acting alginate in situ forming gel injectable.
    Kim H; Song D; Ngo HV; Jin G; Park C; Park JB; Lee BJ
    Carbohydr Polym; 2021 Nov; 272():118453. PubMed ID: 34420713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of antioxidative activity of calcium-D-glucarate, sodium-D-gluconate and D-glucono-1,4-lactone in a human blood platelet model.
    Saluk-Juszczak J
    Platelets; 2010; 21(8):632-40. PubMed ID: 20873960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.