These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9056087)

  • 41. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation.
    Cinelli AR; Hamilton KA; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2053-71. PubMed ID: 7542699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.
    Scott JW; Sherrill L
    J Neurophysiol; 2008 Dec; 100(6):3074-85. PubMed ID: 18842957
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pupillary responses to intranasal trigeminal and olfactory stimulation.
    Schneider CB; Ziemssen T; Schuster B; Seo HS; Haehner A; Hummel T
    J Neural Transm (Vienna); 2009 Jul; 116(7):885-9. PubMed ID: 19484181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trigeminal and olfactory synergism in the perception of smell.
    Westhofen M; Herberhold C
    Acta Otorhinolaryngol Belg; 1987; 41(1):66-71. PubMed ID: 3604655
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electric stimulation.
    Cinelli AR; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2033-52. PubMed ID: 7623098
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Responses of mitral/tufted cells to orthodromic and antidromic electrical stimulation in the olfactory bulb of the tiger salamander.
    Hamilton KA; Kauer JS
    J Neurophysiol; 1988 Jun; 59(6):1736-55. PubMed ID: 3404202
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scopolamine blocks olfaction-induced fast waves but not olfactory evoked potentials in the dentate gyrus.
    Heale VR; Vanderwolf CH
    Behav Brain Res; 1995 Apr; 68(1):57-64. PubMed ID: 7619306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of electrical stimulation of the human olfactory mucosa.
    Straschill M; Stahl H; Gorkisch K
    Appl Neurophysiol; 1983; 46(5-6):286-9. PubMed ID: 6428315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. What a nostril knows: olfactory nerve-evoked AMPA responses increase while NMDA responses decrease at 24-h post-training for lateralized odor preference memory in neonate rat.
    Yuan Q; Harley CW
    Learn Mem; 2012 Feb; 19(2):50-3. PubMed ID: 22240324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impaired mating performances in male rats after anosmia induced peripherally or centrally.
    Larsson K
    Brain Behav Evol; 1971; 4(6):463-71. PubMed ID: 5148390
    [No Abstract]   [Full Text] [Related]  

  • 51. [Electric stimulation of the human olfactory nerve--an approach to short-term memory?].
    Gorkisch K; Axhausen M; Straschill M
    HNO; 1985 Jul; 33(7):325-7. PubMed ID: 3928540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationships between odor-elicited oscillations in the salamander olfactory epithelium and olfactory bulb.
    Dorries KM; Kauer JS
    J Neurophysiol; 2000 Feb; 83(2):754-65. PubMed ID: 10669491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemosensory event-related potentials in early blind humans.
    Cuevas I; Plaza P; Rombaux P; Mouraux A; Delbeke J; Collignon O; De Volder AG; Renier L
    B-ENT; 2011; 7(1):11-7. PubMed ID: 21563551
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Origin of olfactory and rhinosensory evoked cortical potentials in diseases of the central nervous system].
    Westhofen M; Herberhold C; Thayssen G; Jend HH
    Laryngol Rhinol Otol (Stuttg); 1985 Aug; 64(8):378-87. PubMed ID: 4046688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amplifying role of convergence in olfactory system a comparative study of receptor cell and second-order neuron sensitivities.
    Duchamp-Viret P; Duchamp A; Vigouroux M
    J Neurophysiol; 1989 May; 61(5):1085-94. PubMed ID: 2723731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A transthalamic olfactory pathway to orbitofrontal cortex in the monkey.
    Yarita H; Iino M; Tanabe T; Kogure S; Takagi SF
    J Neurophysiol; 1980 Jan; 43(1):69-85. PubMed ID: 6766180
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Topographic organization of primary olfactory nerve in cat and rabbit as shown by evoked potentials.
    Freeman WJ
    Electroencephalogr Clin Neurophysiol; 1974 Jan; 36(1):33-45. PubMed ID: 4128429
    [No Abstract]   [Full Text] [Related]  

  • 58. Odor-driven activity in the olfactory cortex of an in vitro isolated guinea pig whole brain with olfactory epithelium.
    Ishikawa T; Sato T; Shimizu A; Tsutsui K; de Curtis M; Iijima T
    J Neurophysiol; 2007 Jan; 97(1):670-9. PubMed ID: 16870834
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Introduction to clinical investigation of olfactory evoked potentials].
    Obrebowski A; Swidziński T; Swidziński P
    Otolaryngol Pol; 2004; 58(2):253-8. PubMed ID: 15307468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of olfactory and trigeminal function using chemosensory event-related potentials.
    Rombaux P; Mouraux A; Bertrand B; Guerit JM; Hummel T
    Neurophysiol Clin; 2006; 36(2):53-62. PubMed ID: 16844543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.