These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9056302)

  • 1. Capillary Rise for Thermodynamic Characterization of Solid Particle Surface.
    Siebold A; Walliser A; Nardin M; Oppliger M; Schultz J
    J Colloid Interface Sci; 1997 Feb; 186(1):60-70. PubMed ID: 9056302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Washburn's equation facing Galileo's transformation: some remarks.
    Labajos-Broncano L; González-Martín ML; Bruque JM
    J Colloid Interface Sci; 2002 Sep; 253(2):472-4. PubMed ID: 16290880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Surface Wettability of Mineral Rock Particles by an Improved Washburn Method.
    Wang Z; Chu Y; Zhao G; Yin Z; Kuang T; Yan F; Zhang L; Zhang L
    ACS Omega; 2023 May; 8(17):15721-15729. PubMed ID: 37151559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Use of Washburn's Equation in the Distance-Time and Weight-Time Imbibition Techniques.
    Labajos-Broncano L; González-Martín ML; Bruque JM; González-García CM
    J Colloid Interface Sci; 2001 Jan; 233(2):356-360. PubMed ID: 11121287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Use of Washburn's Equation in the Analysis of Weight-Time Measurements Obtained from Imbibition Experiments.
    Labajos-Broncano L; González-Martín ML; Bruque JM; González-García CM; Jańczuk B
    J Colloid Interface Sci; 1999 Nov; 219(2):275-281. PubMed ID: 10534386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Silica Surface Free Energy by the Imbibition Technique.
    González-Martín ML; Janczuk B; Labajos-Broncano L; Bruque JM; González-García CM
    J Colloid Interface Sci; 2001 Aug; 240(2):467-472. PubMed ID: 11482954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn's equation and extended menisci.
    Chu KC; Tsao HK; Sheng YJ
    J Colloid Interface Sci; 2019 Mar; 538():340-348. PubMed ID: 30530031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance-Time Measurements in Capillary Penetration: Choice of the Coordinate System.
    Labajos-Broncano L; González-Martín ML; Janńczuk B; Bruque JM; González-García CM
    J Colloid Interface Sci; 1999 Mar; 211(1):175-177. PubMed ID: 9929450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Problems of contact angle and solid surface free energy determination.
    Chibowski E; Perea-Carpio R
    Adv Colloid Interface Sci; 2002 Jun; 98(2):245-64. PubMed ID: 12144098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the cleanliness of glass capillaries.
    Bowman CL
    Cell Biochem Biophys; 1998; 29(3):203-23. PubMed ID: 9868579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dual role of viscosity in capillary rise.
    Delannoy J; Lafon S; Koga Y; Reyssat É; Quéré D
    Soft Matter; 2019 Apr; 15(13):2757-2761. PubMed ID: 30693361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of intra-particle liquid capillary spread mechanisms in high-temperature stope leaching using MRI.
    Xue Z; Gan D; Zhang Y; Liu Z
    Sci Rep; 2022 Mar; 12(1):5231. PubMed ID: 35347183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal design of porous structures for the fastest liquid absorption.
    Shou D; Ye L; Fan J; Fu K
    Langmuir; 2014 Jan; 30(1):149-55. PubMed ID: 24325355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk and Surface Wettability Characteristics of Probiotic Powders in Their Compressed Disc and Packed-Bed Column Forms.
    Ali MA; Razafindralambo HL; Conti G; De Coninck J
    ACS Omega; 2020 Sep; 5(35):22348-22355. PubMed ID: 32923792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wettability Modification of Nanomaterials by Low-Energy Electron Flux.
    Torchinsky I; Rosenman G
    Nanoscale Res Lett; 2009 Jul; 4(10):1209-1217. PubMed ID: 20596284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the Meniscus at the Bottom of the Solid Plate on Imbibition Experiments.
    Labajos-Broncano L; González-Martín ML; Bruque JM; González-García CM
    J Colloid Interface Sci; 2001 Feb; 234(1):79-83. PubMed ID: 11161493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary rise in Hele-Shaw models of disordered media.
    Clotet X; Planet R; Ortín J
    J Colloid Interface Sci; 2012 Jul; 377(1):387-95. PubMed ID: 22487234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.