These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 9056375)
1. Wetting of a High-Energy Fiber Surface. McHale G; Käb NA; Newton MI; Rowan SM J Colloid Interface Sci; 1997 Feb; 186(2):453-61. PubMed ID: 9056375 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
4. Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid. Yamaguchi Y; Kusudo H; Surblys D; Omori T; Kikugawa G J Chem Phys; 2019 Jan; 150(4):044701. PubMed ID: 30709259 [TBL] [Abstract][Full Text] [Related]
5. Quantifying the solid-fluid interfacial tensions depending on the substrate curvature: Young's equation holds for wetting around nanoscale cylinder. Watanabe K; Kusudo H; Bistafa C; Omori T; Yamaguchi Y J Chem Phys; 2022 Feb; 156(5):054701. PubMed ID: 35135251 [TBL] [Abstract][Full Text] [Related]
9. Size dependent influence of contact line pinning on wetting of nano-textured/patterned silica surfaces. Ozcelik HG; Satiroglu E; Barisik M Nanoscale; 2020 Oct; 12(41):21376-21391. PubMed ID: 33078810 [TBL] [Abstract][Full Text] [Related]
10. Free-Energy Barrier of Filling a Spherical Cavity in the Presence of Line Tension: Implication to the Energy Barrier between the Cassie and Wenzel States on a Superhydrophobic Surface with Spherical Cavities. Iwamatsu M Langmuir; 2016 Sep; 32(37):9475-83. PubMed ID: 27564853 [TBL] [Abstract][Full Text] [Related]
11. Wetting and Spreading Behavior of Axisymmetric Compound Droplets on Curved Solid Walls Using Conservative Phase Field Lattice Boltzmann Method. Wang Y; Huang JJ Entropy (Basel); 2024 Feb; 26(2):. PubMed ID: 38392427 [TBL] [Abstract][Full Text] [Related]
12. Limiting conditions for applying the spherical section assumption in contact angle estimation. Chatterjee J J Colloid Interface Sci; 2003 Mar; 259(1):139-47. PubMed ID: 12651142 [TBL] [Abstract][Full Text] [Related]
13. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops. Gokhale SJ; Plawsky JL; Wayner PC Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921 [TBL] [Abstract][Full Text] [Related]
14. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity. Yonemoto Y; Kunugi T ScientificWorldJournal; 2014; 2014():647694. PubMed ID: 24511297 [TBL] [Abstract][Full Text] [Related]
16. Thin Films in Partial Wetting: Internal Selection of Contact-Line Dynamics. Alizadeh Pahlavan A; Cueto-Felgueroso L; McKinley GH; Juanes R Phys Rev Lett; 2015 Jul; 115(3):034502. PubMed ID: 26230798 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio. Mitra S; Evans G Front Chem; 2018; 6():259. PubMed ID: 30013967 [TBL] [Abstract][Full Text] [Related]
18. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface. Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569 [TBL] [Abstract][Full Text] [Related]
19. Profiles of liquid drops at the tips of cylindrical fibers. Du J; Michielsen S; Lee HJ Langmuir; 2010 Oct; 26(20):16000-4. PubMed ID: 20845970 [TBL] [Abstract][Full Text] [Related]
20. Cylindrical droplet on nanofibers: a step toward the clam-shell drop description. Berim GO; Ruckenstein E J Phys Chem B; 2005 Jun; 109(25):12515-24. PubMed ID: 16852548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]