BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9056381)

  • 1. Fluid percussion injury causes disruption of the septohippocampal pathway in the rat.
    Leonard JR; Grady MS; Lee ME; Paz JC; Westrum LE
    Exp Neurol; 1997 Feb; 143(2):177-87. PubMed ID: 9056381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury.
    Zhu J; Hamm RJ; Reeves TM; Povlishock JT; Phillips LL
    Exp Neurol; 2000 Nov; 166(1):136-52. PubMed ID: 11031090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation.
    Clough RW; Neese SL; Sherill LK; Tan AA; Duke A; Roosevelt RW; Browning RA; Smith DC
    Neuroscience; 2007 Jun; 147(2):286-93. PubMed ID: 17543463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the selective cyclooxygenase-2 inhibitor rofecoxib on cell death following traumatic brain injury in the rat.
    Kunz T; Marklund N; Hillered L; Oliw EH
    Restor Neurol Neurosci; 2006; 24(1):55-63. PubMed ID: 16518028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery.
    Sun D; McGinn MJ; Zhou Z; Harvey HB; Bullock MR; Colello RJ
    Exp Neurol; 2007 Mar; 204(1):264-72. PubMed ID: 17198703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats.
    Passineau MJ; Green EJ; Dietrich WD
    Exp Neurol; 2001 Apr; 168(2):373-84. PubMed ID: 11259125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function.
    Griesbach GS; Hovda DA; Molteni R; Wu A; Gomez-Pinilla F
    Neuroscience; 2004; 125(1):129-39. PubMed ID: 15051152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-dependent neuronal injury after traumatic brain injury.
    Hellmich HL; Capra B; Eidson K; Garcia J; Kennedy D; Uchida T; Parsley M; Cowart J; DeWitt DS; Prough DS
    Brain Res; 2005 May; 1044(2):144-54. PubMed ID: 15885213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Rho after traumatic brain injury and seizure in rats.
    Dubreuil CI; Marklund N; Deschamps K; McIntosh TK; McKerracher L
    Exp Neurol; 2006 Apr; 198(2):361-9. PubMed ID: 16448651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary hypoxia exacerbates acute disruptions of energy metabolism in rats resulting from fluid percussion injury.
    Bauman RA; Widholm J; Long JB
    Behav Brain Res; 2005 May; 160(1):25-33. PubMed ID: 15836897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfluorocarbon emulsions improve cognitive recovery after lateral fluid percussion brain injury in rats.
    Zhou Z; Sun D; Levasseur JE; Merenda A; Hamm RJ; Zhu J; Spiess BD; Bullock MR
    Neurosurgery; 2008 Oct; 63(4):799-806; discussion 806-7. PubMed ID: 18981892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-percussion brain injury induces changes in aquaporin channel expression.
    Oliva AA; Kang Y; Truettner JS; Sanchez-Molano J; Furones C; Yool AJ; Atkins CM
    Neuroscience; 2011 Apr; 180():272-9. PubMed ID: 21329742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevation of hippocampal MMP-3 expression and activity during trauma-induced synaptogenesis.
    Kim HJ; Fillmore HL; Reeves TM; Phillips LL
    Exp Neurol; 2005 Mar; 192(1):60-72. PubMed ID: 15698619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newly born granule cells in the dentate gyrus rapidly extend axons into the hippocampal CA3 region following experimental brain injury.
    Emery DL; Fulp CT; Saatman KE; Schütz C; Neugebauer E; McIntosh TK
    J Neurotrauma; 2005 Sep; 22(9):978-88. PubMed ID: 16156713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid percussion injury causes loss of forebrain choline acetyltransferase and nerve growth factor receptor immunoreactive cells in the rat.
    Leonard JR; Maris DO; Grady MS
    J Neurotrauma; 1994 Aug; 11(4):379-92. PubMed ID: 7837279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mild experimental brain injury differentially alters the expression of neurotrophin and neurotrophin receptor mRNAs in the hippocampus.
    Hicks RR; Martin VB; Zhang L; Seroogy KB
    Exp Neurol; 1999 Dec; 160(2):469-78. PubMed ID: 10619564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat.
    Urrea C; Castellanos DA; Sagen J; Tsoulfas P; Bramlett HM; Dietrich WD
    Restor Neurol Neurosci; 2007; 25(1):65-76. PubMed ID: 17473396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does ketogenic diet alter seizure sensitivity and cell loss following fluid percussion injury?
    Schwartzkroin PA; Wenzel HJ; Lyeth BG; Poon CC; Delance A; Van KC; Campos L; Nguyen DV
    Epilepsy Res; 2010 Nov; 92(1):74-84. PubMed ID: 20863664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute treatment with MgSO4 attenuates long-term hippocampal tissue loss after brain trauma in the rat.
    Browne KD; Leoni MJ; Iwata A; Chen XH; Smith DH
    J Neurosci Res; 2004 Sep; 77(6):878-83. PubMed ID: 15334605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats.
    Lyeth BG; Gong QZ; Shields S; Muizelaar JP; Berman RF
    Exp Neurol; 2001 May; 169(1):191-9. PubMed ID: 11312571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.