BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9056430)

  • 1. In situ hybridization in living cells: detection of RNA molecules.
    Paillasson S; Van De Corput M; Dirks RW; Tanke HJ; Robert-Nicoud M; Ronot X
    Exp Cell Res; 1997 Feb; 231(1):226-33. PubMed ID: 9056430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific detection of RNA molecules by fluorescent in situ hybridization in living cells.
    Paillasson S; Robert-Nicoud M; Ronot X
    Cell Biol Toxicol; 1996 Dec; 12(4-6):359-61. PubMed ID: 9034634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional reconstruction of pericentromeric (1q12) DNA and ribosomal RNA sequences in HL60 cells after double-target in situ hybridization and confocal microscopy.
    van Dekken H; van der Voort HT; Brakenhoff GJ; Bauman JG
    Cytometry; 1990; 11(5):579-85. PubMed ID: 2379448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of a single bacterial cell using a 16S ribosomal RNA-specific oligonucleotide probe designed to investigate periodontal pathogens.
    Tsuruda K; Shimazu A; Sugai M
    Oral Microbiol Immunol; 2009 Apr; 24(2):133-40. PubMed ID: 19239640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometric detection of ribosomal RNA in suspended cells by fluorescent in situ hybridization.
    Bauman JG; Bentvelzen P
    Cytometry; 1988 Nov; 9(6):517-24. PubMed ID: 3208617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization.
    Silverman AP; Kool ET
    Adv Clin Chem; 2007; 43():79-115. PubMed ID: 17249381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing nucleic acids in living cells by fluorescence in vivo hybridization.
    Wiegant J; Brouwer AK; Tanke HJ; Dirks RW
    Methods Mol Biol; 2010; 659():239-46. PubMed ID: 20809316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured probes for RNA detection in living cells.
    Santangelo P; Nitin N; Bao G
    Ann Biomed Eng; 2006 Jan; 34(1):39-50. PubMed ID: 16463087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of two very similar glaucomid ciliate morphospecies (Ciliophora, Tetrahymenida) by fluorescence in situ hybridization with 18S rRNA targeted oligonucleotide probes.
    Fried J; Foissner W
    J Eukaryot Microbiol; 2007; 54(4):381-7. PubMed ID: 17669165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification.
    Coleman JR; Culley DE; Chrisler WB; Brockman FJ
    J Microbiol Methods; 2007 Dec; 71(3):246-55. PubMed ID: 17949838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari.
    Lehtola MJ; Loades CJ; Keevil CW
    J Microbiol Methods; 2005 Aug; 62(2):211-9. PubMed ID: 16009278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LNA flow-FISH: a flow cytometry-fluorescence in situ hybridization method to detect messenger RNA using locked nucleic acid probes.
    Robertson KL; Thach DC
    Anal Biochem; 2009 Jul; 390(2):109-14. PubMed ID: 19393610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction-triggered fluorescent amplification probe for the detection of endogenous RNAs in living human cells.
    Furukawa K; Abe H; Hibino K; Sako Y; Tsuneda S; Ito Y
    Bioconjug Chem; 2009 May; 20(5):1026-36. PubMed ID: 19374406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a unique server-based oligonucleotide probe selection tool toward a novel biosensor for the detection of Streptococcus pyogenes.
    Nugen SR; Leonard B; Baeumner AJ
    Biosens Bioelectron; 2007 May; 22(11):2442-8. PubMed ID: 17011180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ECHO-liveFISH: in vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues.
    Oomoto I; Suzuki-Hirano A; Umeshima H; Han YW; Yanagisawa H; Carlton P; Harada Y; Kengaku M; Okamoto A; Shimogori T; Wang DO
    Nucleic Acids Res; 2015 Oct; 43(19):e126. PubMed ID: 26101260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes.
    Kenny JH; Zhou Y; Schriefer ME; Bearden SW
    J Microbiol Methods; 2008 Oct; 75(2):293-301. PubMed ID: 18655809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous visualization of rDNA clusters and the nucleolus by combining fluorescence in situ hybridization and silver staining.
    Kasai K; Ishii T; Sato S
    Biotech Histochem; 2004; 79(5-6):163-7. PubMed ID: 15764282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes.
    Fuchs BM; Syutsubo K; Ludwig W; Amann R
    Appl Environ Microbiol; 2001 Feb; 67(2):961-8. PubMed ID: 11157269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH).
    Ueno R
    Can J Microbiol; 2009 Apr; 55(4):465-72. PubMed ID: 19396247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization in situ of specific RNA by electron microscopy.
    Izumi S; Shin M; Hishikawa Y; Koji T
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):45-50. PubMed ID: 11729988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.