These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly. Evans MV; Chiu WA; Okino MS; Caldwell JC Toxicol Appl Pharmacol; 2009 May; 236(3):329-40. PubMed ID: 19249323 [TBL] [Abstract][Full Text] [Related]
5. Duration adjustment of acute exposure guideline level values for trichloroethylene using a physiologically-based pharmacokinetic model. Boyes WK; Evans MV; Eklund C; Janssen P; Simmons JE Risk Anal; 2005 Jun; 25(3):677-86. PubMed ID: 16022699 [TBL] [Abstract][Full Text] [Related]
6. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Chiu WA; Okino MS; Evans MV Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485 [TBL] [Abstract][Full Text] [Related]
7. Trichloroacetic acid: updated estimates of its bioavailability and its contribution to trichloroethylene-induced mouse hepatomegaly. Chiu WA Toxicology; 2011 Jul; 285(3):114-25. PubMed ID: 21549800 [TBL] [Abstract][Full Text] [Related]
8. Tissue dosimetry expansion and cross-validation of rat and mouse physiologically based pharmacokinetic models for trichloroethylene. Keys DA; Bruckner JV; Muralidhara S; Fisher JW Toxicol Sci; 2003 Nov; 76(1):35-50. PubMed ID: 12915716 [TBL] [Abstract][Full Text] [Related]
9. Presystemic elimination of trichloroethylene in rats following environmentally relevant oral exposures. Liu Y; Bartlett MG; White CA; Muralidhara S; Bruckner JV Drug Metab Dispos; 2009 Oct; 37(10):1994-8. PubMed ID: 19581386 [TBL] [Abstract][Full Text] [Related]
10. Dose-based duration adjustments for the effects of inhaled trichloroethylene on rat visual function. Boyes WK; Bercegeay M; Ali JS; Krantz T; McGee J; Evans M; Raymer JH; Bushnell PJ; Simmons JE Toxicol Sci; 2003 Nov; 76(1):121-30. PubMed ID: 12915717 [TBL] [Abstract][Full Text] [Related]
11. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene. Liao KH; Tan YM; Clewell HJ Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492 [TBL] [Abstract][Full Text] [Related]
12. Case-control study on renal cell cancer and occupational exposure to trichloroethylene. Part II: Epidemiological aspects. Charbotel B; Fevotte J; Hours M; Martin JL; Bergeret A Ann Occup Hyg; 2006 Nov; 50(8):777-87. PubMed ID: 16840435 [TBL] [Abstract][Full Text] [Related]
13. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Lock EA; Reed CJ Toxicol Sci; 2006 Jun; 91(2):313-31. PubMed ID: 16421178 [TBL] [Abstract][Full Text] [Related]
14. [Renal cell carcinoma and exposure to trichloroethylene: are the French limits of occupational exposure relevant?]. Charbotel B; Fevotte J; Martin JL; Bergeret A Rev Epidemiol Sante Publique; 2009 Feb; 57(1):41-7. PubMed ID: 19155150 [TBL] [Abstract][Full Text] [Related]
15. A simple method for quantitative risk assessment of non-threshold carcinogens based on the dose descriptor T25. Sanner T; Dybing E; Willems MI; Kroese ED Pharmacol Toxicol; 2001 Jun; 88(6):331-41. PubMed ID: 11453374 [TBL] [Abstract][Full Text] [Related]
16. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity. Kirman CR; Gargas ML; Marsh GM; Strother DE; Klaunig JE; Collins JJ; Deskin R Regul Toxicol Pharmacol; 2005 Oct; 43(1):85-103. PubMed ID: 16099568 [TBL] [Abstract][Full Text] [Related]
18. Applying mode-of-action and pharmacokinetic considerations in contemporary cancer risk assessments: an example with trichloroethylene. Clewell HJ; Andersen ME Crit Rev Toxicol; 2004; 34(5):385-445. PubMed ID: 15560567 [TBL] [Abstract][Full Text] [Related]
19. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice. Abbas R; Fisher JW Toxicol Appl Pharmacol; 1997 Nov; 147(1):15-30. PubMed ID: 9356303 [TBL] [Abstract][Full Text] [Related]
20. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose. Gaylor DW; Swirsky Gold L Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]