These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
657 related articles for article (PubMed ID: 9056499)
21. Momentary brain concentration of trichloroethylene predicts the effects on rat visual function. Boyes WK; Bercegeay M; Krantz T; Evans M; Benignus V; Simmons JE Toxicol Sci; 2005 Sep; 87(1):187-96. PubMed ID: 15976185 [TBL] [Abstract][Full Text] [Related]
22. Renal carcinogenicity of trichloroethylene: update, mode of action, and fundamentals for occupational standard setting. Harth V; Brüning T; Bolt HM Rev Environ Health; 2005; 20(2):103-18. PubMed ID: 16121833 [TBL] [Abstract][Full Text] [Related]
23. Have animal data been used inappropriately to estimate risks to humans from environmental trichloroethylene? Steinberg AD; DeSesso JM Regul Toxicol Pharmacol; 1993 Oct; 18(2):137-53. PubMed ID: 8278637 [TBL] [Abstract][Full Text] [Related]
24. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. Doull J; Cattley R; Elcombe C; Lake BG; Swenberg J; Wilkinson C; Williams G; van Gemert M Regul Toxicol Pharmacol; 1999 Jun; 29(3):327-57. PubMed ID: 10388618 [TBL] [Abstract][Full Text] [Related]
25. Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice. Greenberg MS; Burton GA; Fisher JW Toxicol Appl Pharmacol; 1999 Feb; 154(3):264-78. PubMed ID: 9931286 [TBL] [Abstract][Full Text] [Related]
26. Ethyl methanesulfonate toxicity in Viracept--a comprehensive human risk assessment based on threshold data for genotoxicity. Müller L; Gocke E; Lavé T; Pfister T Toxicol Lett; 2009 Nov; 190(3):317-29. PubMed ID: 19443141 [TBL] [Abstract][Full Text] [Related]
27. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform. Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051 [TBL] [Abstract][Full Text] [Related]
28. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice. Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684 [TBL] [Abstract][Full Text] [Related]
29. Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. Willhite CC; Ball GL; McLellan CJ J Toxicol Environ Health B Crit Rev; 2008 Feb; 11(2):69-146. PubMed ID: 18188738 [TBL] [Abstract][Full Text] [Related]
30. NTP Carcinogenesis Studies of Trichloroethylene (Without Epichlorohydrin) (CAS No. 79-01-6) in F344/N Rats and B6C3F1 Mice (Gavage Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1990 May; 243():1-174. PubMed ID: 12750750 [TBL] [Abstract][Full Text] [Related]
31. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide. Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286 [TBL] [Abstract][Full Text] [Related]
32. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane. Lu Y; Rieth S; Lohitnavy M; Dennison J; El-Masri H; Barton HA; Bruckner J; Yang RS Regul Toxicol Pharmacol; 2008 Mar; 50(2):249-60. PubMed ID: 18226845 [TBL] [Abstract][Full Text] [Related]
33. Trichloroethylene: toxicology and health hazards. Candura SM; Faustman EM G Ital Med Lav; 1991; 13(1-6):17-25. PubMed ID: 1845454 [TBL] [Abstract][Full Text] [Related]
34. Trichloroethylene and cancer: epidemiologic evidence. Scott CS; Cogliano VJ Environ Health Perspect; 2000 May; 108 Suppl 2():159-60. PubMed ID: 10807549 [TBL] [Abstract][Full Text] [Related]
35. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-90-7) in F344/N rats and B6C3F1 mice (inhalation studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 2001 Jul; (499):7-340. PubMed ID: 12087422 [TBL] [Abstract][Full Text] [Related]
36. Chloroform: exposure estimation, hazard characterization, and exposure-response analysis. Meek ME; Beauchamp R; Long G; Moir D; Turner L; Walker M J Toxicol Environ Health B Crit Rev; 2002; 5(3):283-334. PubMed ID: 12162870 [TBL] [Abstract][Full Text] [Related]
37. Alternatives for a risk assessment on chronic noncancer effects from oral exposure to trichloroethylene. Barton HA; Das S Regul Toxicol Pharmacol; 1996 Dec; 24(3):269-85. PubMed ID: 8975757 [TBL] [Abstract][Full Text] [Related]
38. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites. Hack CE; Chiu WA; Jay Zhao Q; Clewell HJ Regul Toxicol Pharmacol; 2006 Oct; 46(1):63-83. PubMed ID: 16889879 [TBL] [Abstract][Full Text] [Related]
39. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling. Cronin WJ; Oswald EJ; Shelley ML; Fisher JW; Flemming CD Risk Anal; 1995 Oct; 15(5):555-65. PubMed ID: 7501875 [TBL] [Abstract][Full Text] [Related]
40. Difficulty of mode of action determination for trichloroethylene: An example of complex interactions of metabolites and other chemical exposures. Caldwell JC; Keshava N; Evans MV Environ Mol Mutagen; 2008 Mar; 49(2):142-54. PubMed ID: 17973308 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]