These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 9056499)

  • 41. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice.
    Beland FA
    Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Principles of risk assessment for determining the safety of chemicals: recent assessment of residual solvents in drugs and di(2-ethylhexyl) phthalate.
    Hasegawa R; Koizumi M; Hirose A
    Congenit Anom (Kyoto); 2004 Jun; 44(2):51-9. PubMed ID: 15198717
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physiologically based pharmacodynamic modeling of an interaction threshold between trichloroethylene and 1,1-dichloroethylene in Fischer 344 rats.
    el-Masri HA; Constan AA; Ramsdell HS; Yang RS
    Toxicol Appl Pharmacol; 1996 Nov; 141(1):124-32. PubMed ID: 8917684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of renal cell transformation following exposure to trichloroethene in vivo and its metabolite S-(dichlorovinyl)-L-cysteine in vitro.
    Mally A; Walker CL; Everitt JI; Dekant W; Vamvakas S
    Toxicology; 2006 Jul; 224(1-2):108-18. PubMed ID: 16730402
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tissue repair response as a function of dose during trichloroethylene hepatotoxicity.
    Soni MG; Mangipudy RS; Mumtaz MM; Mehendale HM
    Toxicol Sci; 1998 Apr; 42(2):158-65. PubMed ID: 9579028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The use of mechanistic data and the handling of scientific uncertainty in carcinogen risk assessments. The trichloroethylene example.
    Rudén C
    Regul Toxicol Pharmacol; 2002 Feb; 35(1):80-94. PubMed ID: 11846638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A mechanism-based cancer risk assessment for 1,4-dichlorobenzene.
    Butterworth BE; Aylward LL; Hays SM
    Regul Toxicol Pharmacol; 2007 Nov; 49(2):138-48. PubMed ID: 17688981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene.
    Simon TW
    Regul Toxicol Pharmacol; 1997 Dec; 26(3):257-70. PubMed ID: 9441916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trichloroethylene liver toxicity in mouse and rat: microarray analysis reveals species differences in gene expression.
    Sano Y; Nakashima H; Yoshioka N; Etho N; Nomiyama T; Nishiwaki Y; Takebayashi T; Oame K
    Arch Toxicol; 2009 Sep; 83(9):835-49. PubMed ID: 19448997
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Final report of the safety assessment of Alcohol Denat., including SD Alcohol 3-A, SD Alcohol 30, SD Alcohol 39, SD Alcohol 39-B, SD Alcohol 39-C, SD Alcohol 40, SD Alcohol 40-B, and SD Alcohol 40-C, and the denaturants, Quassin, Brucine Sulfate/Brucine, and Denatonium Benzoate.
    Cosmetic Ingredient Review Expert Panel
    Int J Toxicol; 2008; 27 Suppl 1():1-43. PubMed ID: 18569160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scrutinizing ACGIH risk assessments: the trichloroethylene case.
    Rudén C
    Am J Ind Med; 2003 Aug; 44(2):207-13. PubMed ID: 12874854
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reconstructing population exposures from dose biomarkers: inhalation of trichloroethylene (TCE) as a case study.
    Sohn MD; McKone TE; Blancato JN
    J Expo Anal Environ Epidemiol; 2004 May; 14(3):204-13. PubMed ID: 15141149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contribution of direct solvent injury to the dose-dependent kinetics of trichloroethylene: portal vein administration to rats.
    Lee KM; Muralidhara S; Schnellmann RG; Bruckner JV
    Toxicol Appl Pharmacol; 2000 Apr; 164(1):46-54. PubMed ID: 10739743
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Health risk assessment.
    Abelson PH
    Regul Toxicol Pharmacol; 1993 Apr; 17(2 Pt 1):219-23. PubMed ID: 8484029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects.
    Shipp A; Lawrence G; Gentry R; McDonald T; Bartow H; Bounds J; Macdonald N; Clewell H; Allen B; Van Landingham C
    Crit Rev Toxicol; 2006; 36(6-7):481-608. PubMed ID: 16973444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of presystemic elimination of trichloroethylene and its nonlinear kinetics in rats.
    Lee KM; Bruckner JV; Muralidhara S; Gallo JM
    Toxicol Appl Pharmacol; 1996 Aug; 139(2):262-71. PubMed ID: 8806842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trichloroethylene: an update.
    Kimbrough RD; Mitchell FL; Houk VN
    J Toxicol Environ Health; 1985; 15(3-4):369-83. PubMed ID: 3897556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.