BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 9056646)

  • 1. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia.
    Narisawa S; Fröhlander N; Millán JL
    Dev Dyn; 1997 Mar; 208(3):432-46. PubMed ID: 9056646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization.
    Narisawa S; Wennberg C; Millán JL
    J Pathol; 2001 Jan; 193(1):125-33. PubMed ID: 11169525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice.
    Wennberg C; Hessle L; Lundberg P; Mauro S; Narisawa S; Lerner UH; Millán JL
    J Bone Miner Res; 2000 Oct; 15(10):1879-88. PubMed ID: 11028439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6.
    Waymire KG; Mahuren JD; Jaje JM; Guilarte TR; Coburn SP; MacGregor GR
    Nat Genet; 1995 Sep; 11(1):45-51. PubMed ID: 7550313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically Modified Mice for Studying TNAP Function.
    Narisawa S
    Subcell Biochem; 2015; 76():45-57. PubMed ID: 26219706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(-/-) mouse model of infantile hypophosphatasia.
    Liu J; Nam HK; Campbell C; Gasque KC; Millán JL; Hatch NE
    Bone; 2014 Oct; 67():81-94. PubMed ID: 25014884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic characterization of hypophosphatasia mutations with physiological substrates.
    Di Mauro S; Manes T; Hessle L; Kozlenkov A; Pizauro JM; Hoylaerts MF; Millán JL
    J Bone Miner Res; 2002 Aug; 17(8):1383-91. PubMed ID: 12162492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of disruption of the embryonic alkaline phosphatase gene on preimplantation development of the mouse.
    Dehghani H; Narisawa S; Millán JL; Hahnel AC
    Dev Dyn; 2000 Apr; 217(4):440-8. PubMed ID: 10767088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1.
    Johnson KA; Hessle L; Vaingankar S; Wennberg C; Mauro S; Narisawa S; Goding JW; Sano K; Millan JL; Terkeltaub R
    Am J Physiol Regul Integr Comp Physiol; 2000 Oct; 279(4):R1365-77. PubMed ID: 11004006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of mineralization and the role of alkaline phosphatase in health and disease.
    Orimo H
    J Nippon Med Sch; 2010 Feb; 77(1):4-12. PubMed ID: 20154452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues.
    Brun-Heath I; Ermonval M; Chabrol E; Xiao J; Palkovits M; Lyck R; Miller F; Couraud PO; Mornet E; Fonta C
    Cell Tissue Res; 2011 Mar; 343(3):521-36. PubMed ID: 21191615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzyme replacement therapy for hypophosphatasia].
    Ozono K
    Clin Calcium; 2014 Feb; 24(2):257-63. PubMed ID: 24473359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia.
    Liu J; Campbell C; Nam HK; Caron A; Yadav MC; Millán JL; Hatch NE
    Bone; 2015 Sep; 78():203-11. PubMed ID: 25959417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypophosphatasia: clinicopathologic comparison of the infantile, childhood, and adult forms.
    Fallon MD; Teitelbaum SL; Weinstein RS; Goldfischer S; Brown DM; Whyte MP
    Medicine (Baltimore); 1984 Jan; 63(1):12-24. PubMed ID: 6690884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization.
    Hessle L; Johnson KA; Anderson HC; Narisawa S; Sali A; Goding JW; Terkeltaub R; Millan JL
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9445-9. PubMed ID: 12082181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones.
    Langer D; Ikehara Y; Takebayashi H; Hawkes R; Zimmermann H
    Neuroscience; 2007 Dec; 150(4):863-79. PubMed ID: 18031938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase.
    Tesch W; Vandenbos T; Roschgr P; Fratzl-Zelman N; Klaushofer K; Beertsen W; Fratzl P
    J Bone Miner Res; 2003 Jan; 18(1):117-25. PubMed ID: 12510812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl-/- mice by administration of soluble (non-targeted) chimeric alkaline phosphatase.
    Gasque KC; Foster BL; Kuss P; Yadav MC; Liu J; Kiffer-Moreira T; van Elsas A; Hatch N; Somerman MJ; Millán JL
    Bone; 2015 Mar; 72():137-47. PubMed ID: 25433339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick.
    Macrae VE; Davey MG; McTeir L; Narisawa S; Yadav MC; Millan JL; Farquharson C
    Bone; 2010 Apr; 46(4):1146-55. PubMed ID: 20053388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone mineralization-dependent craniosynostosis and craniofacial shape abnormalities in the mouse model of infantile hypophosphatasia.
    Durussel J; Liu J; Campbell C; Nam HK; Hatch NE
    Dev Dyn; 2016 Feb; 245(2):175-82. PubMed ID: 26605996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.