These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9056845)

  • 1. Model complexes of di-iron sites in methane mono-oxygenase and ribonucleotide reductase: structure and reactivity.
    Fontecave M; Ménage S; Duboc-Toia C; Vincent JM; Lambeaux C
    Biochem Soc Trans; 1997 Feb; 25(1):65-9. PubMed ID: 9056845
    [No Abstract]   [Full Text] [Related]  

  • 2. The structure of a designed diiron(III) protein: implications for cofactor stabilization and catalysis.
    Wade H; Stayrook SE; Degrado WF
    Angew Chem Int Ed Engl; 2006 Jul; 45(30):4951-4. PubMed ID: 16819737
    [No Abstract]   [Full Text] [Related]  

  • 3. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Musaev DG; Basch H; Morokuma K
    J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Di-iron-carboxylate proteins.
    Nordlund P; Eklund H
    Curr Opin Struct Biol; 1995 Dec; 5(6):758-66. PubMed ID: 8749363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the protein environment on the structure and energetics of active sites of metalloenzymes. ONIOM study of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Vreven T; Musaev DG; Morokuma K; Farkas O; Schlegel HB
    J Am Chem Soc; 2002 Jan; 124(2):192-3. PubMed ID: 11782169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ribonucleotide reductase-like electron transfer system in the nitroaryl-forming N-oxygenase AurF.
    Fries A; Bretschneider T; Winkler R; Hertweck C
    Chembiochem; 2011 Aug; 12(12):1832-5. PubMed ID: 21678538
    [No Abstract]   [Full Text] [Related]  

  • 7. Crystal structures of two self-hydroxylating ribonucleotide reductase protein R2 mutants: structural basis for the oxygen-insertion step of hydroxylation reactions catalyzed by diiron proteins.
    Logan DT; deMaré F; Persson BO; Slaby A; Sjöberg BM; Nordlund P
    Biochemistry; 1998 Jul; 37(30):10798-807. PubMed ID: 9692970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase.
    Nordlund P; Dalton H; Eklund H
    FEBS Lett; 1992 Aug; 307(3):257-62. PubMed ID: 1644180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemistry. How iron activates O2.
    Kovacs JA
    Science; 2003 Feb; 299(5609):1024-5. PubMed ID: 12586930
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxygen activation at the diiron center of ribonucleotide reductase.
    Que L
    Science; 1991 Jul; 253(5017):273-4. PubMed ID: 1857963
    [No Abstract]   [Full Text] [Related]  

  • 11. DFT calculations of 57Fe Mössbauer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: applications to methane monooxygenase and ribonucleotide reductase.
    Han WG; Liu T; Lovell T; Noodleman L
    J Comput Chem; 2006 Sep; 27(12):1292-306. PubMed ID: 16786546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for the cofactor formation reaction of E. coli ribonucleotide reductase. From a diiron(II) precursor to an FeIIIFeIV species via a peroxo intermediate.
    MacMurdo VL; Zheng H; Que L
    Inorg Chem; 2000 May; 39(11):2254-5. PubMed ID: 12526481
    [No Abstract]   [Full Text] [Related]  

  • 13. The iron form of methane mono-oxygenase and its mode of action.
    Dalton H; Wilkins P
    Biochem Soc Trans; 1997 Feb; 25(1):69-74. PubMed ID: 9056846
    [No Abstract]   [Full Text] [Related]  

  • 14. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III).
    Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L
    Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of the iron site in ribonucleotide reductase to a self-hydroxylating monooxygenase.
    Ormö M; deMaré F; Regnström K; Aberg A; Sahlin M; Ling J; Loehr TM; Sanders-Loehr J; Sjöberg BM
    J Biol Chem; 1992 May; 267(13):8711-4. PubMed ID: 1577712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible red-ox reactions of the diiron site in the mouse ribonucleotide reductase R2 protein.
    Davydov A; Schmidt PP; Gräslund A
    Biochem Biophys Res Commun; 1996 Feb; 219(1):213-8. PubMed ID: 8619810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+).
    Gopakumar G; Belanzoni P; Baerends EJ
    Inorg Chem; 2012 Jan; 51(1):63-75. PubMed ID: 22221279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron.
    Karlsson A; Parales JV; Parales RE; Gibson DT; Eklund H; Ramaswamy S
    Science; 2003 Feb; 299(5609):1039-42. PubMed ID: 12586937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes.
    Jensen KP; Bell CB; Clay MD; Solomon EI
    J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and spectroscopic studies of the non-heme reduced binuclear iron sites of two ribonucleotide reductase variants: comparison to reduced methane monooxygenase and contributions to O2 reactivity.
    Wei PP; Skulan AJ; Mitić N; Yang YS; Saleh L; Bollinger JM; Solomon EI
    J Am Chem Soc; 2004 Mar; 126(12):3777-88. PubMed ID: 15038731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.