These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. [Research progresses of methanotrophs and methane monooxygenases]. Han B; Su T; Li X; Xing X Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1511-9. PubMed ID: 19160830 [TBL] [Abstract][Full Text] [Related]
24. Analysis of methane monooxygenase genes in mono lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Lin JL; Joye SB; Scholten JC; Schäfer H; McDonald IR; Murrell JC Appl Environ Microbiol; 2005 Oct; 71(10):6458-62. PubMed ID: 16204580 [TBL] [Abstract][Full Text] [Related]
25. Oxidation-reduction potentials of the methane monooxygenase hydroxylase component from Methylosinus trichosporium OB3b. Paulsen KE; Liu Y; Fox BG; Lipscomb JD; Münck E; Stankovich MT Biochemistry; 1994 Jan; 33(3):713-22. PubMed ID: 8292599 [TBL] [Abstract][Full Text] [Related]
26. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III). Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612 [TBL] [Abstract][Full Text] [Related]
27. Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). Gassner GT; Lippard SJ Biochemistry; 1999 Sep; 38(39):12768-85. PubMed ID: 10504247 [TBL] [Abstract][Full Text] [Related]
28. Structure, electronic configuration, and Mössbauer spectral parameters of an antiferromagnetic Fe2-peroxo intermediate of methane monooxygenase. Chachiyo T; Rodriguez JH Dalton Trans; 2012 Jan; 41(3):995-1003. PubMed ID: 22101614 [TBL] [Abstract][Full Text] [Related]
29. Hydroxylation of methane through component interactions in soluble methane monooxygenases. Lee SJ J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath). Colby J; Dalton H Biochem J; 1979 Mar; 177(3):903-8. PubMed ID: 220953 [TBL] [Abstract][Full Text] [Related]
31. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Kovaleva EG; Neibergall MB; Chakrabarty S; Lipscomb JD Acc Chem Res; 2007 Jul; 40(7):475-83. PubMed ID: 17567087 [TBL] [Abstract][Full Text] [Related]
32. Resolution of the methane mono-oxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Colby J; Dalton H Biochem J; 1978 May; 171(2):461-8. PubMed ID: 418777 [TBL] [Abstract][Full Text] [Related]
33. Recombinant toluene-4-monooxygenase: catalytic and Mössbauer studies of the purified diiron and rieske components of a four-protein complex. Pikus JD; Studts JM; Achim C; Kauffmann KE; Münck E; Steffan RJ; McClay K; Fox BG Biochemistry; 1996 Jul; 35(28):9106-19. PubMed ID: 8703915 [TBL] [Abstract][Full Text] [Related]
34. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase. Torrent M; Musaev DG; Basch H; Morokuma K J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390 [TBL] [Abstract][Full Text] [Related]
35. Phthalate oxygenase, a Rieske iron-sulfur protein from Pseudomonas cepacia. Ballou D; Batie C Prog Clin Biol Res; 1988; 274():211-26. PubMed ID: 2841671 [TBL] [Abstract][Full Text] [Related]
36. The structure of a designed diiron(III) protein: implications for cofactor stabilization and catalysis. Wade H; Stayrook SE; Degrado WF Angew Chem Int Ed Engl; 2006 Jul; 45(30):4951-4. PubMed ID: 16819737 [No Abstract] [Full Text] [Related]
37. Stopped-flow Fourier transform infrared spectroscopy of nitromethane oxidation by the diiron(IV) intermediate of methane monooxygenase. Muthusamy M; Ambundo EA; George SJ; Lippard SJ; Thorneley RN J Am Chem Soc; 2003 Sep; 125(37):11150-1. PubMed ID: 16220908 [TBL] [Abstract][Full Text] [Related]
38. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling. Zheng H; Lipscomb JD Biochemistry; 2006 Feb; 45(6):1685-92. PubMed ID: 16460015 [TBL] [Abstract][Full Text] [Related]
39. Extraction and some properties of soluble methane monooxygenase of Methylosinus trichosporium IMV 3011. Yu C; Shen R; Xia C; Li S Ann N Y Acad Sci; 1998 Dec; 864():616-20. PubMed ID: 9928147 [No Abstract] [Full Text] [Related]
40. Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Wolfe MD; Altier DJ; Stubna A; Popescu CV; Münck E; Lipscomb JD Biochemistry; 2002 Jul; 41(30):9611-26. PubMed ID: 12135383 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]