These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9056846)

  • 41. A tailor-made ligand to mimic the active site of diiron enzymes: an air-oxidized high-valent Fe(III) h.s.(μ-O)2Fe(IV) h.s. species.
    Strautmann JB; Walleck S; Bögge H; Stammler A; Glaser T
    Chem Commun (Camb); 2011 Jan; 47(2):695-7. PubMed ID: 21088779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mössbauer studies on the active Fe ... [2Fe-2S] site of putidamonooxin, its electron transport and dioxygen activation mechanism.
    Bill E; Bernhardt FH; Trautwein AX
    Eur J Biochem; 1981 Dec; 121(1):39-46. PubMed ID: 6276173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanistic pathways in soluble methane mono-oxygenase.
    Dalton H; Wilkins PC; Jiang Y
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):749-52. PubMed ID: 8224503
    [No Abstract]   [Full Text] [Related]  

  • 44. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase.
    Lontoh S; Zahn JA; DiSpirito AA; Semrau JD
    FEMS Microbiol Lett; 2000 May; 186(1):109-13. PubMed ID: 10779721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fortuitous oxidations by methane-utilizing bacteria.
    Stirling DI; Dalton H
    Nature; 1981 May; 291(5811):169-70. PubMed ID: 6785652
    [No Abstract]   [Full Text] [Related]  

  • 46. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.
    Vavilin VA; Rytov SV; Shim N; Vogt C
    Isotopes Environ Health Stud; 2016 Jun; 52(3):185-202. PubMed ID: 26513269
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methane monooxygenase: purification and properties of flavoprotein component.
    Patel RN
    Arch Biochem Biophys; 1987 Jan; 252(1):229-36. PubMed ID: 3028258
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Further evidence for multiple pathways in soluble methane-monooxygenase-catalysed oxidations from the measurement of deuterium kinetic isotope effects.
    Wilkins PC; Dalton H; Samuel CJ; Green J
    Eur J Biochem; 1994 Dec; 226(2):555-60. PubMed ID: 8001570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer.
    Erwin DP; Erickson IK; Delwiche ME; Colwell FS; Strap JL; Crawford RL
    Appl Environ Microbiol; 2005 Apr; 71(4):2016-25. PubMed ID: 15812034
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A structural model for the high-valent intermediate Q of methane monooxygenase from broken-symmetry density functional and electrostatics calculations.
    Lovell T; Han WG; Liu T; Noodleman L
    J Am Chem Soc; 2002 May; 124(20):5890-4. PubMed ID: 12010064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1.
    Ferraro DJ; Brown EN; Yu CL; Parales RE; Gibson DT; Ramaswamy S
    BMC Struct Biol; 2007 Mar; 7():10. PubMed ID: 17349044
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct electrochemistry of the hydroxylase of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
    Kazlauskaite J; Hill HA; Wilkins PC; Dalton H
    Eur J Biochem; 1996 Oct; 241(2):552-6. PubMed ID: 8917455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional expression in Escherichia coli of proteins B and C from soluble methane monooxygenase of Methylococcus capsulatus (Bath).
    West CA; Salmond GP; Dalton H; Murrell JC
    J Gen Microbiol; 1992 Jul; 138(7):1301-7. PubMed ID: 1512560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site.
    Chan SI; Wang VC; Lai JC; Yu SS; Chen PP; Chen KH; Chen CL; Chan MK
    Angew Chem Int Ed Engl; 2007; 46(12):1992-4. PubMed ID: 17274089
    [No Abstract]   [Full Text] [Related]  

  • 55. Activation of the hydroxylase of sMMO from Methylococcus capsulatus (Bath) by hydrogen peroxide.
    Jiang Y; Wilkins PC; Dalton H
    Biochim Biophys Acta; 1993 Apr; 1163(1):105-12. PubMed ID: 8476925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mössbauer investigation of the cofactor iron of putidamonooxin.
    Bill E; Bernhardt FH; Trautwein AX; Winkler H
    Eur J Biochem; 1985 Feb; 147(1):177-82. PubMed ID: 2982607
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron.
    Karlsson A; Parales JV; Parales RE; Gibson DT; Eklund H; Ramaswamy S
    Science; 2003 Feb; 299(5609):1039-42. PubMed ID: 12586937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectroscopic properties of the hydroxylase of methane monooxygenase.
    Prince RC; George GN; Savas JC; Cramer SP; Patel RN
    Biochim Biophys Acta; 1988 Jan; 952(2):220-9. PubMed ID: 2827779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanism of methane and dioxygen activation in the catalytic cycle of methane monooxygenase.
    Shteinman AA
    FEBS Lett; 1995 Mar; 362(1):5-9. PubMed ID: 7698352
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparative slab electrofocusing of methane monooxygenase from a type I methanotroph Methylomonas GYJ3.
    Liu AM; Li SB; Yu WL; Zhang F; Chen JX; Su P
    Biochem Int; 1990 Dec; 22(6):959-65. PubMed ID: 2128599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.