BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 9056863)

  • 1. Protein phosphorylation can regulate metabolite concentrations rather than control flux: the example of glycogen synthase.
    Schafer JR; Fell DA; Rothman D; Shulman RG
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1485-90. PubMed ID: 14745035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels.
    Kuno T; Hirayama-Kurogi M; Ito S; Ohtsuki S
    Sci Rep; 2018 Jan; 8(1):1253. PubMed ID: 29352187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose 6-phosphate causes translocation of phosphorylase in hepatocytes and inactivates the enzyme synergistically with glucose.
    Aiston S; Green A; Mukhtar M; Agius L
    Biochem J; 2004 Jan; 377(Pt 1):195-204. PubMed ID: 13678417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific features of glycogen metabolism in the liver.
    Bollen M; Keppens S; Stalmans W
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):19-31. PubMed ID: 9806880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis.
    von Wilamowitz-Moellendorff A; Hunter RW; García-Rocha M; Kang L; López-Soldado I; Lantier L; Patel K; Peggie MW; Martínez-Pons C; Voss M; Calbó J; Cohen PT; Wasserman DH; Guinovart JJ; Sakamoto K
    Diabetes; 2013 Dec; 62(12):4070-82. PubMed ID: 23990365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic models of glycogen metabolism in normal rat liver, Morris hepatoma 7787 and host liver.
    Anderson PJ; Wright BE
    Int J Biochem; 1980; 12(3):361-9. PubMed ID: 6774901
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolic control analysis of hepatic glycogen synthesis in vivo.
    Nozaki Y; Petersen MC; Zhang D; Vatner DF; Perry RJ; Abulizi A; Haedersdal S; Zhang XM; Butrico GM; Samuel VT; Mason GF; Cline GW; Petersen KF; Rothman DL; Shulman GI
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):8166-8176. PubMed ID: 32188779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utile and futile cycles in the liver.
    Hue L; Hers HG
    Biochem Biophys Res Commun; 1974 Jun; 58(3):540-8. PubMed ID: 4209283
    [No Abstract]   [Full Text] [Related]  

  • 9. Bridging the gap between glucose phosphorylation and glycogen synthesis in the liver.
    Guinovart JJ; Gómez-Foix AM; Seoane J; Fernández-Novell JM; Bellido D; Vilaró S
    Biochem Soc Trans; 1997 Feb; 25(1):157-60. PubMed ID: 9056863
    [No Abstract]   [Full Text] [Related]  

  • 10. Control of glycogen deposition.
    Ferrer JC; Favre C; Gomis RR; Fernández-Novell JM; García-Rocha M; de la Iglesia N; Cid E; Guinovart JJ
    FEBS Lett; 2003 Jul; 546(1):127-32. PubMed ID: 12829248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insight into the regulation of liver glycogen metabolism by glucose.
    Stalmans W; Cadefau J; Wera S; Bollen M
    Biochem Soc Trans; 1997 Feb; 25(1):19-25. PubMed ID: 9056835
    [No Abstract]   [Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.