These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 9057115)
1. Chronic placental insufficiency in the fetal guinea pig affects neurochemical and neuroglial development but not neuronal numbers in the brainstem: a new method for combined stereology and immunohistochemistry. Tolcos M; Rees S J Comp Neurol; 1997 Mar; 379(1):99-112. PubMed ID: 9057115 [TBL] [Abstract][Full Text] [Related]
2. Chronic prenatal exposure to carbon monoxide results in a reduction in tyrosine hydroxylase-immunoreactivity and an increase in choline acetyltransferase-immunoreactivity in the fetal medulla: implications for Sudden Infant Death Syndrome. Tolcos M; McGregor H; Walker D; Rees S J Neuropathol Exp Neurol; 2000 Mar; 59(3):218-28. PubMed ID: 10744060 [TBL] [Abstract][Full Text] [Related]
3. The structural and neurochemical development of the fetal guinea pig retina and optic nerve in experimental growth retardation. Rees S; Bainbridge A Int J Dev Neurosci; 1992; 10(1):93-108. PubMed ID: 1376956 [TBL] [Abstract][Full Text] [Related]
4. Immunoreactivity of neurogenic factor in the guinea pig brain after prenatal hypoxia. Chung Y; So K; Kim E; Kim S; Jeon Y Ann Anat; 2015 Jul; 200():66-72. PubMed ID: 25794637 [TBL] [Abstract][Full Text] [Related]
5. The effects of intrauterine growth retardation on the development of neuroglia in fetal guinea pigs. An immunohistochemical and an ultrastructural study. Nitsos I; Rees S Int J Dev Neurosci; 1990; 8(3):233-44. PubMed ID: 1696773 [TBL] [Abstract][Full Text] [Related]
6. The fetal brainstem is relatively spared from injury following intrauterine hypoxemia. Tolcos M; Harding R; Loeliger M; Breen S; Cock M; Duncan J; Rees S Brain Res Dev Brain Res; 2003 Jun; 143(1):73-81. PubMed ID: 12763582 [TBL] [Abstract][Full Text] [Related]
7. Chronic placental insufficiency affects retinal development in the guinea pig. Loeliger M; Briscoe T; Lambert G; Caddy J; Rehn A; Dieni S; Rees S Invest Ophthalmol Vis Sci; 2004 Jul; 45(7):2361-7. PubMed ID: 15223818 [TBL] [Abstract][Full Text] [Related]
8. Early- versus Late-Onset Fetal Growth Restriction Differentially Affects the Development of the Fetal Sheep Brain. Alves de Alencar Rocha AK; Allison BJ; Yawno T; Polglase GR; Sutherland AE; Malhotra A; Jenkin G; Castillo-Melendez M; Miller SL Dev Neurosci; 2017; 39(1-4):141-155. PubMed ID: 28273661 [TBL] [Abstract][Full Text] [Related]
9. Exposure to prenatal carbon monoxide and postnatal hyperthermia: short and long-term effects on neurochemicals and neuroglia in the developing brain. Tolcos M; Mallard C; McGregor H; Walker D; Rees S Exp Neurol; 2000 Apr; 162(2):235-46. PubMed ID: 10739630 [TBL] [Abstract][Full Text] [Related]
10. Correlation of astrogliosis and substance P immunoreactivity in the brainstem of victims of sudden infant death syndrome. Yamanouchi H; Takashima S; Becker LE Neuropediatrics; 1993 Aug; 24(4):200-3. PubMed ID: 7694169 [TBL] [Abstract][Full Text] [Related]
11. An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia. Rehn AE; Van Den Buuse M; Copolov D; Briscoe T; Lambert G; Rees S Neuroscience; 2004; 129(2):381-91. PubMed ID: 15501595 [TBL] [Abstract][Full Text] [Related]
12. Distribution of substance P-like immunoreactive fibres and terminals in the medulla oblongata of the human infant. Rikard-Bell GC; Törk I; Sullivan C; Scheibner T Neuroscience; 1990; 34(1):133-48. PubMed ID: 1691463 [TBL] [Abstract][Full Text] [Related]
13. Consequences of intrauterine growth restriction on ventilatory and thermoregulatory responses to asphyxia and hypercapnia in the newborn guinea-pig. Tolcos M; Rees S; McGregor H; Walker D Reprod Fertil Dev; 2002; 14(1-2):85-92. PubMed ID: 12051528 [TBL] [Abstract][Full Text] [Related]
14. Prenatally compromised neurons respond to brain-derived neurotrophic factor treatment in vitro. Briscoe TA; Tolcos M; Dieni S; Loeliger M; Rees SM Neuroreport; 2006 Sep; 17(13):1385-9. PubMed ID: 16932144 [TBL] [Abstract][Full Text] [Related]
15. Intrauterine Growth Restriction: Effects on Neural Precursor Cell Proliferation and Angiogenesis in the Foetal Subventricular Zone. Tolcos M; Markwick R; O'Dowd R; Martin V; Turnley A; Rees S Dev Neurosci; 2015; 37(4-5):453-63. PubMed ID: 25720426 [TBL] [Abstract][Full Text] [Related]
16. Intrauterine Growth Restriction Affects Cerebellar Granule Cells in the Developing Guinea Pig Brain. Tolcos M; McDougall A; Shields A; Chung Y; O'Dowd R; Turnley A; Wallace M; Rees S Dev Neurosci; 2018; 40(2):162-174. PubMed ID: 29763885 [TBL] [Abstract][Full Text] [Related]
17. Differential regulation of FGF-2 in neurons and reactive astrocytes of axotomized rat hypoglossal nucleus. A possible therapeutic target for neuroprotection in peripheral nerve pathology. de Oliveira GP; Duobles T; Castelucci P; Chadi G Acta Histochem; 2010 Nov; 112(6):604-17. PubMed ID: 19665173 [TBL] [Abstract][Full Text] [Related]
18. Neuronal expression of Raf protooncogene in the brain stem of adult guinea pig. Mihály A; Endrész V Acta Histochem; 2000 May; 102(2):203-17. PubMed ID: 10824613 [TBL] [Abstract][Full Text] [Related]
19. Localization of Met-enkephalin-like immunoreactivity within pain-related nuclei of cervical spinal cord, brainstem and midbrain in the cat. Conrath-Verrier M; Dietl M; Arluison M; Cesselin F; Bourgoin S; Hamon M Brain Res Bull; 1983 Nov; 11(5):587-604. PubMed ID: 6365253 [TBL] [Abstract][Full Text] [Related]
20. The medullary serotonergic centres involved in cardiorespiratory control are disrupted by fetal growth restriction. Ahmadzadeh E; Dudink I; Walker DW; Sutherland AE; Pham Y; Stojanovska V; Polglase GR; Miller SL; Allison BJ J Physiol; 2024 Nov; 602(21):5923-5941. PubMed ID: 37641535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]