These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9057263)

  • 1. Possible contributions of magnocellular- and parvocellular-pathway cells to transient VEPs.
    Valberg A; Rudvin I
    Vis Neurosci; 1997; 14(1):1-11. PubMed ID: 9057263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual evoked potentials and magnocellular and parvocellular segregation.
    Rudvin I; Valberg A; Kilavik BE
    Vis Neurosci; 2000; 17(4):579-90. PubMed ID: 11016577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On identifying magnocellular and parvocellular responses on the basis of contrast-response functions.
    Skottun BC; Skoyles JR
    Schizophr Bull; 2011 Jan; 37(1):23-6. PubMed ID: 20929967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis.
    Porciatti V; Sartucci F
    Brain; 1996 Jun; 119 ( Pt 3)():723-40. PubMed ID: 8673486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme.
    Bonfiglio L; Bocci T; Minichilli F; Crecchi A; Barloscio D; Spina DM; Rossi B; Sartucci F
    Restor Neurol Neurosci; 2017; 35(1):11-24. PubMed ID: 27858722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion.
    Tobimatsu S; Tomoda H; Kato M
    J Neurol Sci; 1995 Dec; 134(1-2):73-82. PubMed ID: 8747847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.
    Robson AG; Kulikowski JJ
    Vis Neurosci; 2012 Nov; 29(6):301-13. PubMed ID: 23206417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flicker VEPs reflecting multiple rod and cone pathways.
    Rudvin I; Valberg A
    Vision Res; 2006 Mar; 46(5):699-717. PubMed ID: 16171839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual evoked potentials for reversals of red-green gratings with different chromatic contrasts: asymmetries with respect to isoluminance.
    Rudvin I
    Vis Neurosci; 2005; 22(6):749-58. PubMed ID: 16469185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs.
    Ellemberg D; Hammarrenger B; Lepore F; Roy MS; Guillemot JP
    Spat Vis; 2001; 15(1):99-111. PubMed ID: 11893127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The execution of saccadic eye movements suppresses visual processing of both color and luminance in the early visual cortex of humans.
    Zhang Y; Valsecchi M; Gegenfurtner KR; Chen J
    J Neurophysiol; 2024 Jun; 131(6):1156-1167. PubMed ID: 38690998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A few observations on linking VEP responses to the magno- and parvocellular systems by way of contrast-response functions.
    Skottun BC
    Int J Psychophysiol; 2014 Mar; 91(3):147-54. PubMed ID: 24440598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between luminance and colour channels in visual search and their relationship to parallel neural channels in vision.
    Li JC; Sampson GP; Vidyasagar TR
    Exp Brain Res; 2007 Jan; 176(3):510-8. PubMed ID: 17119943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrast response properties of magnocellular and parvocellular pathways in retinitis pigmentosa assessed by the visual evoked potential.
    Alexander KR; Rajagopalan AS; Seiple W; Zemon VM; Fishman GA
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2967-73. PubMed ID: 16043873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatic gain controls in visual cortical neurons.
    Solomon SG; Lennie P
    J Neurosci; 2005 May; 25(19):4779-92. PubMed ID: 15888653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychophysical channels and ERP population responses in human visual cortex: area summation across chromatic and achromatic pathways.
    Ribeiro MJ; Castelo-Branco M
    Vision Res; 2010 Jun; 50(13):1283-91. PubMed ID: 20430049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia.
    Schechter I; Butler PD; Zemon VM; Revheim N; Saperstein AM; Jalbrzikowski M; Pasternak R; Silipo G; Javitt DC
    Clin Neurophysiol; 2005 Sep; 116(9):2204-15. PubMed ID: 16055375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysfunction of early-stage visual processing in schizophrenia.
    Butler PD; Schechter I; Zemon V; Schwartz SG; Greenstein VC; Gordon J; Schroeder CE; Javitt DC
    Am J Psychiatry; 2001 Jul; 158(7):1126-33. PubMed ID: 11431235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.