These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 9057328)
1. Discrete regions of the sensor protein virA determine the strain-specific ability of Agrobacterium to agroinfect maize. Heath JD; Boulton MI; Raineri DM; Doty SL; Mushegian AR; Charles TC; Davies JW; Nester EW Mol Plant Microbe Interact; 1997 Mar; 10(2):221-7. PubMed ID: 9057328 [TBL] [Abstract][Full Text] [Related]
2. Variable efficiency of a Ti plasmid-encoded VirA protein in different agrobacterial hosts. Bélanger C; Loubens I; Nester EW; Dion P J Bacteriol; 1997 Apr; 179(7):2305-13. PubMed ID: 9079917 [TBL] [Abstract][Full Text] [Related]
3. VirA, the plant-signal receptor, is responsible for the Ti plasmid-specific transfer of DNA to maize by Agrobacterium. Raineri DM; Boulton MI; Davies JW; Nester EW Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3549-53. PubMed ID: 8475103 [TBL] [Abstract][Full Text] [Related]
4. DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Grimsley N; Hohn B; Ramos C; Kado C; Rogowsky P Mol Gen Genet; 1989 Jun; 217(2-3):309-16. PubMed ID: 2770696 [TBL] [Abstract][Full Text] [Related]
5. A T-DNA from the Agrobacterium tumefaciens limited-host-range strain AB2/73 contains a single oncogene. Otten L; Schmidt J Mol Plant Microbe Interact; 1998 May; 11(5):335-42. PubMed ID: 9574502 [TBL] [Abstract][Full Text] [Related]
6. The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids. Schrammeijer B; Hemelaar J; Hooykaas PJ Mol Plant Microbe Interact; 1998 May; 11(5):429-33. PubMed ID: 9574510 [TBL] [Abstract][Full Text] [Related]
7. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Cangelosi GA; Ankenbauer RG; Nester EW Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6708-12. PubMed ID: 2118656 [TBL] [Abstract][Full Text] [Related]
8. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. Shimoda N; Toyoda-Yamamoto A; Aoki S; Machida Y J Biol Chem; 1993 Dec; 268(35):26552-8. PubMed ID: 8253785 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex formation and plant transformation. Wang K; Herrera-Estrella A; Van Montagu M J Bacteriol; 1990 Aug; 172(8):4432-40. PubMed ID: 2165478 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the virA virulence gene of the nopaline plasmid, pTiC58, of Agrobacterium tumefaciens. Morel P; Powell BS; Rogowsky PM; Kado CI Mol Microbiol; 1989 Sep; 3(9):1237-46. PubMed ID: 2796735 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. Leroux B; Yanofsky MF; Winans SC; Ward JE; Ziegler SF; Nester EW EMBO J; 1987 Apr; 6(4):849-56. PubMed ID: 3595559 [TBL] [Abstract][Full Text] [Related]
12. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Hansen G; Das A; Chilton MD Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7603-7. PubMed ID: 8052627 [TBL] [Abstract][Full Text] [Related]
13. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. Jin S; Roitsch T; Ankenbauer RG; Gordon MP; Nester EW J Bacteriol; 1990 Feb; 172(2):525-30. PubMed ID: 2404940 [TBL] [Abstract][Full Text] [Related]
14. [Demonstration of 3 functional domains responsible for a kinase activity in VirA, a transmembrane sensory protein encoded by the Ti plasmid of Agrobacterium tumefaciens]. Morel P; Powell BS; Kado CI C R Acad Sci III; 1990; 310(2):21-6. PubMed ID: 2105145 [TBL] [Abstract][Full Text] [Related]
15. Characterization of an unusual sensor gene (virA) of Agrobacterium. Lee YW; Ha UH; Sim WS; Nester EW Gene; 1998 Apr; 210(2):307-14. PubMed ID: 9573388 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis of the signal-sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Toyoda-Yamamoto A; Shimoda N; Machida Y Mol Gen Genet; 2000 Jul; 263(6):939-47. PubMed ID: 10954079 [TBL] [Abstract][Full Text] [Related]
17. The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Velázquez E; Peix A; Zurdo-Piñeiro JL; Palomo JL; Mateos PF; Rivas R; Muñoz-Adelantado E; Toro N; García-Benavides P; Martínez-Molina E Mol Plant Microbe Interact; 2005 Dec; 18(12):1325-32. PubMed ID: 16478052 [TBL] [Abstract][Full Text] [Related]
18. Glu-255 outside the predicted ChvE binding site in VirA is crucial for sugar enhancement of acetosyringone perception by Agrobacterium tumefaciens. Banta LM; Joerger RD; Howitz VR; Campbell AM; Binns AN J Bacteriol; 1994 Jun; 176(11):3242-9. PubMed ID: 8195079 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. Doty SL; Yu MC; Lundin JI; Heath JD; Nester EW J Bacteriol; 1996 Feb; 178(4):961-70. PubMed ID: 8576069 [TBL] [Abstract][Full Text] [Related]
20. virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Stachel SE; Zambryski PC Cell; 1986 Aug; 46(3):325-33. PubMed ID: 3731272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]