BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9058050)

  • 41. Cholecystokinin enhances the acoustic startle response in rats.
    Fendt M; Koch M; Kungel M; Schnitzler HU
    Neuroreport; 1995 Oct; 6(15):2081-4. PubMed ID: 8580445
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane properties of giant neurons in the caudal pontine reticular formation in vitro.
    Wagner T; Mack A
    Neuroreport; 1998 Apr; 9(6):1211-5. PubMed ID: 9601696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle.
    Geis HR; Schmid S
    Neurosci Res; 2011 Oct; 71(2):114-23. PubMed ID: 21726589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.
    Bijlsma EY; Hendriksen H; Baas JM; Millan MJ; Groenink L
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1733-43. PubMed ID: 26302762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cochlear and trigeminal systems contributing to the startle reflex in rats.
    Scott BW; Frankland PW; Li L; Yeomans JS
    Neuroscience; 1999; 91(4):1565-74. PubMed ID: 10391460
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The involvement of ventral tegmental area cholinergic muscarinic receptors in classically conditioned fear expression as measured with fear-potentiated startle.
    Greba Q; Munro LJ; Kokkinidis L
    Brain Res; 2000 Jul; 870(1-2):135-41. PubMed ID: 10869510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of corticotropin releasing factor (CRF) receptors 1 and 2 in CRF-potentiated acoustic startle in mice.
    Risbrough VB; Hauger RL; Pelleymounter MA; Geyer MA
    Psychopharmacology (Berl); 2003 Nov; 170(2):178-87. PubMed ID: 12845406
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fear-potentiated startle and electrically evoked startle mediated by synapses in rostrolateral midbrain.
    Frankland PW; Yeomans JS
    Behav Neurosci; 1995 Aug; 109(4):669-80. PubMed ID: 7576211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substance P is involved in the sensitization of the acoustic startle response by footshocks in rats.
    Krase W; Koch M; Schnitzler HU
    Behav Brain Res; 1994 Jul; 63(1):81-8. PubMed ID: 7524534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glycine receptors in the caudal pontine reticular formation: are they important for the inhibition of the acoustic startle response?
    Koch M; Friauf E
    Brain Res; 1995 Feb; 671(1):63-72. PubMed ID: 7728534
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lesions of the central gray block the sensitization of the acoustic startle response in rats.
    Fendt M; Koch M; Schnitzler HU
    Brain Res; 1994 Oct; 661(1-2):163-73. PubMed ID: 7530582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Repeated stress, like vasopressin, sensitizes the excitatory effects of corticotropin releasing factor on the acoustic startle reflex.
    Pelton GH; Lee Y; Davis M
    Brain Res; 1997 Dec; 778(2):381-7. PubMed ID: 9459555
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alphaxalone, a steroid anesthetic, inhibits the startle-enhancing effects of corticotropin releasing factor, but not strychnine.
    Swerdlow NR; Britton KT
    Psychopharmacology (Berl); 1994 Jun; 115(1-2):141-6. PubMed ID: 7862886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrolytic lesions of the amygdala block acquisition and expression of fear-potentiated startle even with extensive training but do not prevent reacquisition.
    Kim M; Davis M
    Behav Neurosci; 1993 Aug; 107(4):580-95. PubMed ID: 8397863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Axons and synapses mediating startle-like responses evoked by electrical stimulation of the reticular formation in rats: symmetric and asymmetric collision effects.
    Yeomans JS; Hempel CM; Chapman CA
    Brain Res; 1993 Jul; 617(2):309-19. PubMed ID: 8402159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fear-potentiated startle using an auditory conditioned stimulus: effect of lesions of the amygdala.
    Hitchcock JM; Davis M
    Physiol Behav; 1987; 39(3):403-8. PubMed ID: 3575483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fear-potentiated startle: a neural and pharmacological analysis.
    Davis M; Falls WA; Campeau S; Kim M
    Behav Brain Res; 1993 Dec; 58(1-2):175-98. PubMed ID: 8136044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRF1 and CRF2 receptors are required for potentiated startle to contextual but not discrete cues.
    Risbrough VB; Geyer MA; Hauger RL; Coste S; Stenzel-Poore M; Wurst W; Holsboer F
    Neuropsychopharmacology; 2009 May; 34(6):1494-503. PubMed ID: 19020499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic plasticity in the acoustic startle pathway: the neuronal basis for short-term habituation?
    Weber M; Schnitzler HU; Schmid S
    Eur J Neurosci; 2002 Oct; 16(7):1325-32. PubMed ID: 12405993
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural systems involved in fear and anxiety measured with fear-potentiated startle.
    Davis M
    Am Psychol; 2006 Nov; 61(8):741-756. PubMed ID: 17115806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.