These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 9058844)

  • 1. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias.
    Spach MS; Boineau JP
    Pacing Clin Electrophysiol; 1997 Feb; 20(2 Pt 2):397-413. PubMed ID: 9058844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stochastic nature of cardiac propagation at a microscopic level. Electrical description of myocardial architecture and its application to conduction.
    Spach MS; Heidlage JF
    Circ Res; 1995 Mar; 76(3):366-80. PubMed ID: 7859383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropatterns of propagation.
    Lee PJ; Pogwizd SM
    Adv Cardiol; 2006; 42():86-106. PubMed ID: 16646586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiating reentry: the role of nonuniform anisotropy in small circuits.
    Spach MS; Josephson ME
    J Cardiovasc Electrophysiol; 1994 Feb; 5(2):182-209. PubMed ID: 8186887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell size and communication: role in structural and electrical development and remodeling of the heart.
    Spach MS; Heidlage JF; Barr RC; Dolber PC
    Heart Rhythm; 2004 Oct; 1(4):500-15. PubMed ID: 15851207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation.
    Spach MS; Dolber PC; Heidlage JF
    Circ Res; 1988 Apr; 62(4):811-32. PubMed ID: 2450697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth.
    Spach MS; Heidlage JF; Dolber PC; Barr RC
    Circ Res; 2000 Feb; 86(3):302-11. PubMed ID: 10679482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils.
    Nguyen TP; Qu Z; Weiss JN
    J Mol Cell Cardiol; 2014 May; 70():83-91. PubMed ID: 24184999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.
    Spach MS; Dolber PC
    Circ Res; 1986 Mar; 58(3):356-71. PubMed ID: 3719925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential role of Ca2+ for electrical cell-to-cell uncoupling and conduction block in myocardial tissue.
    Kléber G
    Basic Res Cardiol; 1992; 87 Suppl 2():131-43. PubMed ID: 1299207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connexins and cardiac arrhythmias.
    van Rijen HVM; van Veen TAB; Gros D; Wilders R; de Bakker JMT
    Adv Cardiol; 2006; 42():150-160. PubMed ID: 16646589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical consequences of cardiac myocyte: fibroblast coupling.
    McArthur L; Chilton L; Smith GL; Nicklin SA
    Biochem Soc Trans; 2015 Jun; 43(3):513-8. PubMed ID: 26009200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reentrant excitation as a cause of cardiac arrhythmias.
    Wit AL; Cranefield PF
    Am J Physiol; 1978 Jul; 235(1):H1-17. PubMed ID: 677321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Multiscale modeling of cardiac electrical activity].
    Comtois P; Potse M; Vinet A
    Med Sci (Paris); 2010 Jan; 26(1):57-64. PubMed ID: 20132776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling.
    Rohr S; Kucera JP; Fast VG; Kléber AG
    Science; 1997 Feb; 275(5301):841-4. PubMed ID: 9012353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined reduction of intercellular coupling and membrane excitability differentially affects transverse and longitudinal cardiac conduction.
    Stein M; van Veen TA; Remme CA; Boulaksil M; Noorman M; van Stuijvenberg L; van der Nagel R; Bezzina CR; Hauer RN; de Bakker JM; van Rijen HV
    Cardiovasc Res; 2009 Jul; 83(1):52-60. PubMed ID: 19389723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.
    Rudy Y; Quan WL
    Circ Res; 1987 Dec; 61(6):815-23. PubMed ID: 3677338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in anisotropic conduction caused by remodeling cell size and the cellular distribution of gap junctions and Na(+) channels.
    Spach MS; Heidlage JF; Dolber PC; Barr RC
    J Electrocardiol; 2001; 34 Suppl():69-76. PubMed ID: 11781939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular electrophysiologic mechanisms of cardiac arrhythmias.
    Wit AL
    Cardiol Clin; 1990 Aug; 8(3):393-409. PubMed ID: 2205382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.