BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 9058948)

  • 1. Fractal character of the neural spike train in the visual system of the cat.
    Teich MC; Heneghan C; Lowen SB; Ozaki T; Kaplan E
    J Opt Soc Am A Opt Image Sci Vis; 1997 Mar; 14(3):529-46. PubMed ID: 9058948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maintained discharge of neurons in the cat lateral geniculate nucleus: spectral analysis and computational modeling.
    Mukherjee P; Kaplan E
    Vis Neurosci; 1998; 15(3):529-39. PubMed ID: 9685205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal spike dynamics and neuronal coupling in the primate visual system.
    Munn B; Zeater N; Pietersen AN; Solomon SG; Cheong SK; Martin PR; Gong P
    J Physiol; 2020 Apr; 598(8):1551-1571. PubMed ID: 31944290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal features of dark, maintained, and driven neural discharges in the cat visual system.
    Lowen SB; Ozaki T; Kaplan E; Saleh BE; Teich MC
    Methods; 2001 Aug; 24(4):377-94. PubMed ID: 11466002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractal character of the electrocardiogram: distinguishing heart-failure and normal patients.
    Turcott RG; Teich MC
    Ann Biomed Eng; 1996; 24(2):269-93. PubMed ID: 8678358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal-to-noise comparisons for X and Y cells in the retina and lateral geniculate nucleus of the cat.
    Wilson JR; Bullier J; Norton TT
    Exp Brain Res; 1988; 70(2):399-405. PubMed ID: 3384040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast sensitivity is enhanced by expansive nonlinear processing in the lateral geniculate nucleus.
    Duong T; Freeman RD
    J Neurophysiol; 2008 Jan; 99(1):367-72. PubMed ID: 17959741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of the effect of retinal ganglion cell impulses upon the firing probability of neurons in the dorsal lateral geniculate nucleus of the cat.
    Levine MW; Cleland BG
    Brain Res; 2001 Jun; 902(2):244-54. PubMed ID: 11384618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal diversity in the lateral geniculate nucleus of cat.
    Wolfe J; Palmer LA
    Vis Neurosci; 1998; 15(4):653-75. PubMed ID: 9682868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties.
    Mastronarde DN
    J Neurophysiol; 1987 Feb; 57(2):381-413. PubMed ID: 3559685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptive field properties of cat perigeniculate neurons correlate with excitatory and inhibitory connectivity to LGN relay neurons.
    Osaki H; Naito T; Soma S; Sato H
    Neurosci Res; 2018 Jul; 132():26-36. PubMed ID: 28916470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Populations of tightly coupled neurons: the RGC/LGN system.
    Sirovich L
    Neural Comput; 2008 May; 20(5):1179-210. PubMed ID: 18047410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear computations shaping temporal processing of precortical vision.
    Butts DA; Cui Y; Casti AR
    J Neurophysiol; 2016 Sep; 116(3):1344-57. PubMed ID: 27334959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A connectomic approach to the lateral geniculate nucleus.
    Morgan JL
    Vis Neurosci; 2017 Jan; 34():E014. PubMed ID: 29629669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring of variability in the lateral geniculate nucleus of the cat.
    Levine MW; Cleland BG; Mukherjee P; Kaplan E
    Biol Cybern; 1996 Sep; 75(3):219-27. PubMed ID: 8900037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity and strength of retinogeniculate connections.
    Usrey WM; Reppas JB; Reid RC
    J Neurophysiol; 1999 Dec; 82(6):3527-40. PubMed ID: 10601479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term correlations in the spike trains of medullary sympathetic neurons.
    Lewis CD; Gebber GL; Larsen PD; Barman SM
    J Neurophysiol; 2001 Apr; 85(4):1614-22. PubMed ID: 11287485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of the S (slow) potential in the mammalian lateral geniculate nucleus.
    Kaplan E; Shapley R
    Exp Brain Res; 1984; 55(1):111-6. PubMed ID: 6086369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The periodogram and Allan variance reveal fractal exponents greater than unity in auditory-nerve spike trains.
    Lowen SB; Teich MC
    J Acoust Soc Am; 1996 Jun; 99(6):3585-91. PubMed ID: 8655790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.