These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9059827)

  • 1. Quantitative description of migration behavior of porphyrins based on the dynamic complexation model in a nonaqueous capillary electrophoresis system.
    Bowser MT; Sternberg ED; Chen DD
    Electrophoresis; 1997 Jan; 18(1):82-91. PubMed ID: 9059827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative description of analyte migration behavior based on dynamic complexation in capillary electrophoresis with one or more additives.
    Peng X; Bowser MT; Britz-McKibbin P; Bebault GM; Morris JR; Chen DD
    Electrophoresis; 1997 May; 18(5):706-16. PubMed ID: 9194595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of a nonaqueous capillary electrophoresis system for the analysis of porphyrins and their oligomers (PHOTOFRIN).
    Bowser MT; Sternberg ED; Chen DD
    Anal Biochem; 1996 Oct; 241(2):143-50. PubMed ID: 8921179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurately describing weak analyte-additive interactions by capillary electrophoresis.
    Britz-McKibbin P; Chen DD
    Electrophoresis; 2002 Mar; 23(6):880-8. PubMed ID: 11920872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of neutral cyclodextrin concentration on plate numbers in capillary electrophoresis.
    Seals TH; Sheng C; Davis JM
    Electrophoresis; 2001 Jun; 22(10):1957-73. PubMed ID: 11465494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and empirical approaches to express the mobility of small ions in capillary electrophoresis.
    Jouyban A; Kenndler E
    Electrophoresis; 2006 Mar; 27(5-6):992-1005. PubMed ID: 16470782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral separation of benzoporphyrin derivative mono- and diacids by laser induced fluorescence-capillary electrophoresis.
    Peng X; Sternberg E; Dolphin D
    Electrophoresis; 2002 Jan; 23(1):93-101. PubMed ID: 11824627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of solvent effects in capillary electrophoresis for the separation of biological porphyrin methyl esters.
    Li Q; Chang CK; Huie CW
    Electrophoresis; 2005 Sep; 26(17):3349-59. PubMed ID: 16080211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary electrophoresis of methylderivatives of quinolines. I.
    Bednár P; Barták P; Adamovský P; Gavenda A; Sevcík J; Stránsky Z
    J Chromatogr A; 2001 May; 917(1-2):319-29. PubMed ID: 11403484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants.
    Dvořák M; Svobodová J; Beneš M; Gaš B
    Electrophoresis; 2013 Mar; 34(5):761-7. PubMed ID: 23254978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-bond effect and ion-pair association in the separation of neutral calix[4]pyrroles by nonaqueous capillary electrophoresis.
    Ma H; Luo M; Shao S; Liu X; Jiang S
    J Chromatogr A; 2008 Apr; 1188(1):57-60. PubMed ID: 17963773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher order equilibria and their effect on analyte migration behavior in capillary electrophoresis.
    Bowser MT; Chen DD
    Anal Chem; 1998 Aug; 70(15):3261-70. PubMed ID: 21644662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of stability constants of complexes of neutral analytes with charged cyclodextrins by affinity capillary electrophoresis.
    Beneš M; Zusková I; Svobodová J; Gaš B
    Electrophoresis; 2012 Mar; 33(6):1032-9. PubMed ID: 22528423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation effects in the separation of calix[4]pyrroles by nonaqueous capillary electrophoresis with tetraalkylammonium chloride salts as background electrolytes.
    Ma H; Luo M; Shao S; Liu X; Jiang S
    J Chromatogr A; 2008 May; 1192(1):180-6. PubMed ID: 18395731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of capillary electrophoresis as a versatile tool to measure interaction constants between a KDR-binding PEGylated lipopeptide and pegylated phospholipid micelles.
    Poitevin M; Tranquart F; Cherkaoui S
    Electrophoresis; 2015 Jan; 36(2):326-34. PubMed ID: 25257539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of a mixture of charged and neutral additives on analyte migration behavior in capillary electrophoresis.
    Kranack AR; Bowser MT; Britz-McKibbin P; Chen DD
    Electrophoresis; 1998 Mar; 19(3):388-96. PubMed ID: 9551790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of neutral surfactants for the capillary electrophoretic separation of hydrophobically modified poly(acrylic acids).
    Collet J; Tribet C; Gareil P
    Electrophoresis; 1996 Jul; 17(7):1202-9. PubMed ID: 8855405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary electrophoresis in N,N-dimethylformamide.
    Porras SP; Kenndler E
    Electrophoresis; 2005 Sep; 26(17):3279-91. PubMed ID: 16143981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of urea on viscosity of hydroxethyl cellulose and observed mobility of deoxyribonucleic acids.
    Otim O
    Biopolymers; 2001 Mar; 58(3):329-34. PubMed ID: 11169392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.