These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 906015)

  • 1. Ultrastructural changes in intersegmental cuticle during rotation of the terminal abdominal segments in a mosquito.
    Chevone BI; Richards AG
    Tissue Cell; 1977; 9(2):241-54. PubMed ID: 906015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of the atypic muscles associated with terminalial inversion in male Aedes aegypti (L).
    Chevone BI; Richards AG
    Biol Bull; 1976 Oct; 151(2):283-96. PubMed ID: 974162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus.
    Vargas HC; Farnesi LC; Martins AJ; Valle D; Rezende GL
    J Insect Physiol; 2014 Mar; 62():54-60. PubMed ID: 24534672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of insemination status in live Aedes aegypti females.
    Carrasquilla MC; Lounibos LP
    J Insect Physiol; 2015 Apr; 75():1-4. PubMed ID: 25721054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical Structure for Telescopic Movement of Honey bee (Insecta: Apidae) Abdomen: Folded Intersegmental Membrane.
    Zhao J; Yan S; Wu J
    J Insect Sci; 2016; 16(1):. PubMed ID: 27456912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ultrastructure of the Aedes aegypti heart.
    Leódido ACM; Ramalho-Ortigão M; Martins GF
    Arthropod Struct Dev; 2013 Nov; 42(6):539-550. PubMed ID: 24095854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin and movement of gas during adult emergence in Aedes aegypti: an hypothesis.
    Walker MC; Romoser WS
    J Am Mosq Control Assoc; 1987 Sep; 3(3):429-32. PubMed ID: 3504927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure and formation of the physogastric termite queen cuticle.
    Bordereau C
    Tissue Cell; 1982; 14(2):371-96. PubMed ID: 6214044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure and development of the extensible abdominal intersegmental membranes of the female migratory locust.
    Mines ER; Hackman RH
    Tissue Cell; 1987; 19(1):71-82. PubMed ID: 18620189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern and polarity of sclerites in adult abdominal segments of Calliphora erythrocephala (Diptera): anlage rotation experiments.
    Pearson MJ
    J Embryol Exp Morphol; 1977 Feb; 37(1):91-104. PubMed ID: 870595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of leucokinin-VIII on Aedes Malpighian tubule segments lacking stellate cells.
    Yu MJ; Beyenbach KW
    J Exp Biol; 2004 Jan; 207(Pt 3):519-26. PubMed ID: 14691099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements.
    Dickson LB; Sharakhova MV; Timoshevskiy VA; Fleming KL; Caspary A; Sylla M; Black WC
    PLoS Negl Trop Dis; 2016 Apr; 10(4):e0004626. PubMed ID: 27105225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrastructural study on the early cellular response to Dirofilaria immitis (Nematoda) in the Malpighian tubules of Aedes aegypti (refractory strains).
    Vegni Talluri M; Cancrini G
    Parasite; 1994 Dec; 1(4):343-8. PubMed ID: 9140500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infection of Aedes albopictus (Diptera: Culicidae) and Ae. aegypti with Lambornella stegomyiae (Ciliophora: Tetrahymenidae).
    Arshad HH; Sulaiman I
    J Invertebr Pathol; 1995 Nov; 66(3):303-6. PubMed ID: 8568285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Variations in the structure of the abdominal cuticle of Tenebrio molitor L].
    Delachambre J
    Tissue Cell; 1975; 7(4):669-76. PubMed ID: 1209587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation.
    Farnesi LC; Menna-Barreto RF; Martins AJ; Valle D; Rezende GL
    J Insect Physiol; 2015 Dec; 83():43-52. PubMed ID: 26514070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore canal shape related to molecular architecture of arthropod cuticle.
    Neville AC; Thomas MG; Zelazny B
    Tissue Cell; 1969; 1(1):183-200. PubMed ID: 18631464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti.
    Chen J; Lu HR; Zhang L; Liao CH; Han Q
    Parasit Vectors; 2019 Jun; 12(1):311. PubMed ID: 31234914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors.
    Farnesi LC; Vargas HCM; Valle D; Rezende GL
    PLoS Negl Trop Dis; 2017 Oct; 11(10):e0006063. PubMed ID: 29084225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of RR-1 and RR-2 cuticular proteins within the cuticle of Anopheles gambiae.
    Vannini L; Willis JH
    Arthropod Struct Dev; 2017 Jan; 46(1):13-29. PubMed ID: 27717796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.