These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 9060208)

  • 21. Monte Carlo simulation and measurement of radiation leakage from applicators used in external electron radiotherapy.
    Shimozato T; Okudaira K; Fuse H; Tabushi K
    Phys Med; 2013 Jun; 29(4):388-96. PubMed ID: 22771332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculation of microplanar beam dose profiles in a tissue/lung/tissue phantom.
    Company FZ; Allen BJ
    Phys Med Biol; 1998 Sep; 43(9):2491-501. PubMed ID: 9755941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High density dental materials and radiotherapy planning: comparison of the dose predictions using superposition algorithm and fluence map Monte Carlo method with radiochromic film measurements.
    Spirydovich S; Papiez L; Langer M; Sandison G; Thai V
    Radiother Oncol; 2006 Dec; 81(3):309-14. PubMed ID: 17113666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the use of an analytic source model for dose calculations in precision image-guided small animal radiotherapy.
    Granton PV; Verhaegen F
    Phys Med Biol; 2013 May; 58(10):3377-95. PubMed ID: 23615380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulation of small electron fields collimated by the integrated photon MLC.
    Mihaljevic J; Soukup M; Dohm O; Alber M
    Phys Med Biol; 2011 Feb; 56(3):829-43. PubMed ID: 21242628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC; Grigorov GN
    Phys Med Biol; 2007 Jul; 52(13):3965-77. PubMed ID: 17664588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry.
    Al-Sulaiti L; Shipley D; Thomas R; Owen P; Kacperek A; Regan PH; Palmans H
    Appl Radiat Isot; 2012 Jul; 70(7):1052-7. PubMed ID: 22386662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation in the calibrated response of LiF, Al2O3, and silicon dosimeters when used for in-phantom measurements of source photons with energies between 30 KeV AND 300 KeV.
    Poudel S; Currier B; Medich DC
    Health Phys; 2015 Apr; 108(4):434-42. PubMed ID: 25706137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model for calculating depth dose distributions for broad electron beams.
    Werner BL; Khan FM; Deibel FC
    Med Phys; 1983; 10(5):582-8. PubMed ID: 6646062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The spectrum and angular distribution of x rays scattered from a water phantom.
    Cheng CW; Taylor KW; Holloway AF
    Med Phys; 1995 Aug; 22(8):1235-45. PubMed ID: 7476709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An EGS4 Monte Carlo examination of general cavity theory.
    Mobit PN; Nahum AE; Mayles P
    Phys Med Biol; 1997 Jul; 42(7):1319-34. PubMed ID: 9253042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photon fluence and dose estimation in computed tomography using a discrete ordinates Boltzmann solver.
    Norris ET; Liu X
    Sci Rep; 2020 Jul; 10(1):11609. PubMed ID: 32665588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of photon dose distributions in an inhomogeneous medium using convolutions.
    Boyer AL; Mok EC
    Med Phys; 1986; 13(4):503-9. PubMed ID: 3090410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental and theoretical energy and angular dependencies of scattered radiation in the mammography energy range.
    Klein DJ; Chan HP; Muntz EP; Doi K; Lee K; Chopelas P; Bernstein H; Lee J
    Med Phys; 1983; 10(5):664-8. PubMed ID: 6646072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The sliced bomab phantom: a new variant for intercomparison.
    Kramer GH; Hauck BM
    Health Phys; 2006 Feb; 90(2):161-6. PubMed ID: 16404174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulations of the use of isotropic light dosimetry probes to monitor energy fluence in biological tissues.
    de Jodet ML
    Phys Med Biol; 1999 Dec; 44(12):3027-37. PubMed ID: 10616152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of absorbed dose within an A150 plastic phantom for a d(13.5 MeV) + Be neutron source.
    Brede HJ; Schlegel-Bickmann D; Dietze G; Daures-Caumes J; Ostrowsky A
    Phys Med Biol; 1988 Apr; 33(4):413-26. PubMed ID: 3380883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring Focal Laser Ablation with Interstitial Fluence Probes: Monte Carlo Simulation and Phantom Validation.
    Geoghegan R; Priester A; Zhang L; Wu H; Marks L; Natarajan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5272-5275. PubMed ID: 33019173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Which wavelength is optimal for transcranial low-level laser stimulation?
    Wang P; Li T
    J Biophotonics; 2019 Feb; 12(2):e201800173. PubMed ID: 30043500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods.
    Williams G; Zankl M; Abmayr W; Veit R; Drexler G
    Phys Med Biol; 1986 Apr; 31(4):449-52. PubMed ID: 3737684
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.