These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9060513)
1. Prosthetic replacement of the hip in dogs using bioactive bone cement. Matsuda Y; Ido K; Nakamura T; Fujita H; Yamamuro T; Oka M; Shibuya T Clin Orthop Relat Res; 1997 Mar; (336):263-77. PubMed ID: 9060513 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of bioactive bone cement in canine total hip arthroplasty. Fujita H; Ido K; Matsuda Y; Iida H; Oka M; Kitamura Y; Nakamura T J Biomed Mater Res; 2000 Feb; 49(2):273-88. PubMed ID: 10571916 [TBL] [Abstract][Full Text] [Related]
3. Development of bioactive bone cement and its clinical applications. Yamamuro T; Nakamura T; Iida H; Kawanabe K; Matsuda Y; Ido K; Tamura J; Senaha Y Biomaterials; 1998 Aug; 19(16):1479-82. PubMed ID: 9794522 [TBL] [Abstract][Full Text] [Related]
4. Mechanical and biological properties of two types of bioactive bone cements containing MgO-CaO-SiO2-P2O5-CaF2 glass and glass-ceramic powder. Tamura J; Kawanabe K; Kobayashi M; Nakamura T; Kokubo T; Yoshihara S; Shibuya T J Biomed Mater Res; 1996 Jan; 30(1):85-94. PubMed ID: 8788109 [TBL] [Abstract][Full Text] [Related]
5. Bone bonding ability of bioactive bone cements. Tamura J; Kitsugi T; Iida H; Fujita H; Nakamura T; Kokubo T; Yoshihara S Clin Orthop Relat Res; 1997 Oct; (343):183-91. PubMed ID: 9345224 [TBL] [Abstract][Full Text] [Related]
6. Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength. Fujita H; Nakamura T; Tamura J; Kobayashi M; Katsura Y; Kokubo T; Kikutani T J Biomed Mater Res; 1998 Apr; 40(1):145-52. PubMed ID: 9511109 [TBL] [Abstract][Full Text] [Related]
7. Long-term follow-up study of bioactive bone cement in canine total hip arthroplasty. Liang B; Fujibayashi S; Fujita H; Ise K; Neo M; Nakamura T J Long Term Eff Med Implants; 2006; 16(4):291-9. PubMed ID: 17073571 [TBL] [Abstract][Full Text] [Related]
8. Effects of ceramic component on cephalexin release from bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Fujita H; Nakamura T; Kokubo T Biomed Mater Eng; 2001; 11(1):11-22. PubMed ID: 11281575 [TBL] [Abstract][Full Text] [Related]
9. Bioactive bone cement: the effect of amounts of glass powder and histologic changes with time. Tamura J; Kawanabe K; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S; Shibuya T J Biomed Mater Res; 1995 May; 29(5):551-9. PubMed ID: 7622540 [TBL] [Abstract][Full Text] [Related]
10. A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder. Kawanabe K; Tamura J; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1993; 4(2):135-41. PubMed ID: 10148600 [TBL] [Abstract][Full Text] [Related]
11. Pressurization of bioactive bone cement in vitro. Fujita H; Iida H; Kawanabe K; Okada Y; Oka M; Masuda T; Kitamura Y; Nakamura T J Biomed Mater Res; 1999; 48(1):43-51. PubMed ID: 10029149 [TBL] [Abstract][Full Text] [Related]
12. A bioactive bone cement containing Bis-GMA resin and A-W glass-ceramic as an augmentation graft material on mandibular bone. Fujimura K; Bessho K; Okubo Y; Segami N; Iizuka T Clin Oral Implants Res; 2003 Oct; 14(5):659-67. PubMed ID: 12969371 [TBL] [Abstract][Full Text] [Related]
13. Antibiotic delivery system using bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Sawada M; Matsuda Y; Nakamura T; Kokubo T Biomaterials; 1997 Dec; 18(23):1559-64. PubMed ID: 9430339 [TBL] [Abstract][Full Text] [Related]
14. Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement. Kobayashi M; Nakamura T; Shinzato S; Mousa WF; Nishio K; Ohsawa K; Kokubo T; Kikutani T J Biomed Mater Res; 1999 Sep; 46(4):447-57. PubMed ID: 10398005 [TBL] [Abstract][Full Text] [Related]
15. Titania-containing bioactive bone cement for total hip arthroplasty in dogs. Imamura M; Goto K; Kawata T; Kataoka M; Fukuda C; Fujibayashi S; Matsuda S J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1238-1245. PubMed ID: 30261123 [TBL] [Abstract][Full Text] [Related]
16. Bioactive bone cement: comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and beta-tricalcium phosphate fillers on bone-bonding strength. Kobayashi M; Nakamura T; Okada Y; Fukumoto A; Furukawa T; Kato H; Kokubo T; Kikutani T J Biomed Mater Res; 1998 Nov; 42(2):223-37. PubMed ID: 9773818 [TBL] [Abstract][Full Text] [Related]
17. Bioactive bone cement: comparison of AW-GC filler with hydroxyapatite and beta-TCP fillers on mechanical and biological properties. Kobayashi M; Nakamura T; Tamura J; Kokubo T; Kikutani T J Biomed Mater Res; 1997 Dec; 37(3):301-13. PubMed ID: 9368135 [TBL] [Abstract][Full Text] [Related]
18. A study of the bioactive bone cement--bone interface: quantitative and histological evaluation. Nishimura N; Taguchi Y; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1993; 4(1):29-38. PubMed ID: 10148343 [TBL] [Abstract][Full Text] [Related]
19. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation. Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301 [TBL] [Abstract][Full Text] [Related]
20. Mechanical and biological properties of bioactive bone cement containing silica glass powder. Kobayashi M; Nakamura T; Tamura J; Iida H; Fujita H; Kokubo T; Kikutani T J Biomed Mater Res; 1997 Oct; 37(1):68-80. PubMed ID: 9335351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]