These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9062654)

  • 1. Trans-synaptic stimulation of cortical acetylcholine and enhancement of attentional functions: a rational approach for the development of cognition enhancers.
    Sarter M; Bruno JP
    Behav Brain Res; 1997 Feb; 83(1-2):7-14. PubMed ID: 9062654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive functions of cortical ACh: lessons from studies on trans-synaptic modulation of activated efflux.
    Sarter MF; Bruno JP
    Trends Neurosci; 1994 Jun; 17(6):217-21. PubMed ID: 7521080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal mechanisms mediating drug-induced cognition enhancement: cognitive activity as a necessary intervening variable.
    Sarter M; Bruno JP; Givens B; Moore H; McGaughy J; McMahon K
    Brain Res Cogn Brain Res; 1996 Jun; 3(3-4):329-43. PubMed ID: 8806034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional modulation of stimulated cortical acetylcholine release by benzodiazepine receptor ligands.
    Moore H; Sarter M; Bruno JP
    Brain Res; 1993 Nov; 627(2):267-74. PubMed ID: 8298971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection.
    Sarter M; Hasselmo ME; Bruno JP; Givens B
    Brain Res Brain Res Rev; 2005 Feb; 48(1):98-111. PubMed ID: 15708630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders.
    Sarter M; Bruno JP; Turchi J
    Ann N Y Acad Sci; 1999 Jun; 877():368-82. PubMed ID: 10415659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional modulation of cortical acetylcholine efflux by infusion of benzodiazepine receptor ligands into the basal forebrain.
    Moore H; Sarter M; Bruno JP
    Neurosci Lett; 1995 Apr; 189(1):31-4. PubMed ID: 7603619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal mechanisms of the attentional dysfunctions in senile dementia and schizophrenia: two sides of the same coin?
    Sarter M
    Psychopharmacology (Berl); 1994 May; 114(4):539-50. PubMed ID: 7855215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic Overstimulation Attenuates Rule Selectivity in Macaque Prefrontal Cortex.
    Major AJ; Vijayraghavan S; Everling S
    J Neurosci; 2018 Jan; 38(5):1137-1150. PubMed ID: 29255006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats.
    Kozak R; Martinez V; Young D; Brown H; Bruno JP; Sarter M
    Neuropsychopharmacology; 2007 Oct; 32(10):2074-86. PubMed ID: 17299502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive functions of cortical acetylcholine: toward a unifying hypothesis.
    Sarter M; Bruno JP
    Brain Res Brain Res Rev; 1997 Feb; 23(1-2):28-46. PubMed ID: 9063585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent modulation of in vivo cortical acetylcholine release by benzodiazepine receptor ligands.
    Moore H; Sarter M; Bruno JP
    Brain Res; 1992 Nov; 596(1-2):17-29. PubMed ID: 1334777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related attenuation of stimulated cortical acetylcholine release in basal forebrain-lesioned rats.
    Fadel J; Sarter M; Bruno JP
    Neuroscience; 1999 Mar; 90(3):793-802. PubMed ID: 10218780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional modulation of basal forebrain N-methyl-D-aspartate receptor function differentially affects visual attention but not visual discrimination performance.
    Turchi J; Sarter M
    Neuroscience; 2001; 104(2):407-17. PubMed ID: 11377844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in cortical acetylcholine release during sustained attention performance in rats.
    Himmelheber AM; Sarter M; Bruno JP
    Brain Res Cogn Brain Res; 2000 Jun; 9(3):313-25. PubMed ID: 10808142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical acetylcholine, reality distortion, schizophrenia, and Lewy Body Dementia: too much or too little cortical acetylcholine?
    Sarter M; Bruno JP
    Brain Cogn; 1998 Dec; 38(3):297-316. PubMed ID: 9841788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents.
    Sarter M; Bruno JP
    Neuroscience; 2000; 95(4):933-52. PubMed ID: 10682701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release.
    Zmarowski A; Sarter M; Bruno JP
    Synapse; 2007 Mar; 61(3):115-23. PubMed ID: 17146770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats.
    McGaughy J; Decker MW; Sarter M
    Psychopharmacology (Berl); 1999 May; 144(2):175-82. PubMed ID: 10394999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation between the attentional effects of infusions of a benzodiazepine receptor agonist and an inverse agonist into the basal forebrain.
    Holley LA; Turchi J; Apple C; Sarter M
    Psychopharmacology (Berl); 1995 Jul; 120(1):99-108. PubMed ID: 7480541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.