These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 9063002)
1. Inhibition of yeast-to-mycelium conversion of Candida albicans by conjugated styryl ketones. Manavathu E; Duncan C; Porte Q; Gunasekaran M Mycopathologia; 1996; 135(2):79-83. PubMed ID: 9063002 [TBL] [Abstract][Full Text] [Related]
2. Activity of some Mannich bases of conjugated styryl ketones against Candida albicans. Dimmock JR; Kumar P; Manavathu EK; Obedeanu N; Grewal J Pharmazie; 1994 Dec; 49(12):909-12. PubMed ID: 7838880 [TBL] [Abstract][Full Text] [Related]
3. Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans. Manavathu M; Gunasekaran S; Porte Q; Manavathu E; Gunasekaran M Can J Microbiol; 1996 Jan; 42(1):76-9. PubMed ID: 8595600 [TBL] [Abstract][Full Text] [Related]
4. Antifungal activity of conjugated styryl ketones. Manavathu EK; McDonald LA; Gunasekaran S; Gunasekaran M Indian J Exp Biol; 1997 Apr; 35(4):361-5. PubMed ID: 9315235 [TBL] [Abstract][Full Text] [Related]
5. In vitro antifungal activity of some Mannich bases of conjugated styryl ketones. Manavathu EK; Vashishtha SC; Alangaden GJ; Dimmock JR Can J Microbiol; 1998 Jan; 44(1):74-9. PubMed ID: 9522452 [TBL] [Abstract][Full Text] [Related]
6. Glutathione levels during thermal induction of the yeast-to-mycelial transition in Candida albicans. Thomas D; Klein K; Manavathu E; Dimmock JR; Mutus B FEMS Microbiol Lett; 1991 Jan; 61(2-3):331-4. PubMed ID: 2037237 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Messier C; Epifano F; Genovese S; Grenier D Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508 [TBL] [Abstract][Full Text] [Related]
8. Effect of edible sesame oil on growth of clinical isolates of Candida albicans. Ogawa T; Nishio J; Okada S Biol Res Nurs; 2014 Jul; 16(3):335-43. PubMed ID: 24057219 [TBL] [Abstract][Full Text] [Related]
9. Correlation between the intracellular content of glutathione and the formation of germ-tubes induced by human serum in Candida albicans. González-Párraga P; Marín FR; Argüelles JC; Hernández JA Biochim Biophys Acta; 2005 Apr; 1722(3):324-30. PubMed ID: 15777624 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of hyphal growth of Candida albicans by activated lansoprazole, a novel benzimidazole proton pump inhibitor. Biswas SK; Yokoyama K; Kamei K; Nishimura K; Miyaji M Med Mycol; 2001 Jun; 39(3):283-5. PubMed ID: 11446532 [TBL] [Abstract][Full Text] [Related]
11. Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. Yang LF; Liu X; Lv LL; Ma ZM; Feng XC; Ma TH J Mycol Med; 2018 Mar; 28(1):36-44. PubMed ID: 29477784 [TBL] [Abstract][Full Text] [Related]
12. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088 [TBL] [Abstract][Full Text] [Related]
13. 5-Azacytidine accelerates yeast-mycelium conversion in Candida albicans. Pancaldi S; Del Senno L; Fasulo MP; Poli F; Vannini GL Cell Biol Int Rep; 1988 Jan; 12(1):35-40. PubMed ID: 2456156 [TBL] [Abstract][Full Text] [Related]
14. Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. Jung HJ; Seu YB; Lee DG J Microbiol Biotechnol; 2007 Aug; 17(8):1324-9. PubMed ID: 18051601 [TBL] [Abstract][Full Text] [Related]
15. Possible mechanism of antifungal phenazine-1-carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans. Tupe SG; Kulkarni RR; Shirazi F; Sant DG; Joshi SP; Deshpande MV J Appl Microbiol; 2015 Jan; 118(1):39-48. PubMed ID: 25348290 [TBL] [Abstract][Full Text] [Related]
16. Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells. Del Rio M; de la Canal L; Pinedo M; Mora-Montes HM; Regente M Phytomedicine; 2019 May; 58():152875. PubMed ID: 30884454 [TBL] [Abstract][Full Text] [Related]
17. Characterization of binding of human fibrinogen to the surface of germ-tubes and mycelium of candida albicans. Bouali A; Robert R; Tronchin G; Senet JM J Gen Microbiol; 1987 Mar; 133(3):545-51. PubMed ID: 3309160 [TBL] [Abstract][Full Text] [Related]
18. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. Uppuluri P; Mekala S; Chaffin WL Yeast; 2007 Aug; 24(8):681-93. PubMed ID: 17583896 [TBL] [Abstract][Full Text] [Related]
19. Strong correlation between the antifungal effect of amphotericin B and its inhibitory action on germ-tube formation in a Candida albicans URA⁺ strain. Guirao-Abad JP; González-Párraga P; Argüelles JC Int Microbiol; 2015 Mar; 18(1):25-31. PubMed ID: 26415664 [TBL] [Abstract][Full Text] [Related]
20. Influence of carbon and nitrogen sources on glutathione catabolic enzymes in Candida albicans during dimorphism. Gunasekaran S; Imbayagwo M; McDonald L; Gunasekaran M; Manavathu E Mycopathologia; 1995 Aug; 131(2):93-7. PubMed ID: 8532061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]