These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 9063452)
1. Expression of the Zymomonas mobilis gfo gene or NADP-containing glucose:fructose oxidoreductase (GFOR) in Escherichia coli. Formation of enzymatically active preGFOR but lack of processing into a stable periplasmic protein. Wiegert T; Sahm H; Sprenger GA Eur J Biochem; 1997 Feb; 244(1):107-12. PubMed ID: 9063452 [TBL] [Abstract][Full Text] [Related]
2. Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form. Loos H; Sahm H; Sprenger GA FEMS Microbiol Lett; 1993 Mar; 107(2-3):293-8. PubMed ID: 8472911 [TBL] [Abstract][Full Text] [Related]
3. Export of the periplasmic NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis. Wiegert T; Sahm H; Sprenger GA Arch Microbiol; 1996 Jul; 166(1):32-41. PubMed ID: 8661942 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands. Nurizzo D; Halbig D; Sprenger GA; Baker EN Biochemistry; 2001 Nov; 40(46):13857-67. PubMed ID: 11705375 [TBL] [Abstract][Full Text] [Related]
5. Specificity of signal peptide recognition in tat-dependent bacterial protein translocation. Blaudeck N; Sprenger GA; Freudl R; Wiegert T J Bacteriol; 2001 Jan; 183(2):604-10. PubMed ID: 11133954 [TBL] [Abstract][Full Text] [Related]
6. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. Wiegert T; Sahm H; Sprenger GA J Biol Chem; 1997 May; 272(20):13126-33. PubMed ID: 9148926 [TBL] [Abstract][Full Text] [Related]
7. Lactobionic acid production by glucose-fructose oxidoreductase from Zymomonas mobilis expressed in Escherichia coli. Goderska K; Juzwa W; Szwengiel A; Czarnecki Z Biotechnol Lett; 2015 Oct; 37(10):2047-53. PubMed ID: 26091863 [TBL] [Abstract][Full Text] [Related]
8. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Halbig D; Wiegert T; Blaudeck N; Freudl R; Sprenger GA Eur J Biochem; 1999 Jul; 263(2):543-51. PubMed ID: 10406965 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation. Lott JS; Halbig D; Baker HM; Hardman MJ; Sprenger GA; Baker EN J Mol Biol; 2000 Dec; 304(4):575-84. PubMed ID: 11099381 [TBL] [Abstract][Full Text] [Related]
10. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Kingston RL; Scopes RK; Baker EN Structure; 1996 Dec; 4(12):1413-28. PubMed ID: 8994968 [TBL] [Abstract][Full Text] [Related]
11. Cloning, sequence analysis, and expression of the structural gene encoding glucose-fructose oxidoreductase from Zymomonas mobilis. Kanagasundaram V; Scopes RK J Bacteriol; 1992 Mar; 174(5):1439-47. PubMed ID: 1537789 [TBL] [Abstract][Full Text] [Related]
12. Control of the association state of tetrameric glucose-fructose oxidoreductase from Zymomonas mobilis as the rationale for stabilization of the enzyme in biochemical reactors. Fürlinger M; Satory M; Haltrich D; Kulbe KD; Nidetzky B J Biochem; 1998 Aug; 124(2):280-6. PubMed ID: 9685715 [TBL] [Abstract][Full Text] [Related]
13. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. Wiebe MG; Nygård Y; Oja M; Andberg M; Ruohonen L; Koivula A; Penttilä M; Toivari M Appl Microbiol Biotechnol; 2015 Nov; 99(22):9439-47. PubMed ID: 26264136 [TBL] [Abstract][Full Text] [Related]
14. Bacterial proteins carrying twin-R signal peptides are specifically targeted by the delta pH-dependent transport machinery of the thylakoid membrane system. Halbig D; Hou B; Freudl R; Sprenger GA; Klösgen RB FEBS Lett; 1999 Mar; 447(1):95-8. PubMed ID: 10218590 [TBL] [Abstract][Full Text] [Related]
15. Cloning and expression in Escherichia coli of an alkaline phosphatase (phoA) gene from Zymomonas mobilis. Karunakaran T; Gunasekaran P Curr Microbiol; 1992 Nov; 25(5):291-5. PubMed ID: 1369200 [TBL] [Abstract][Full Text] [Related]
16. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis. Zhang X; Chen G; Liu W FEMS Microbiol Lett; 2009 Apr; 293(2):214-9. PubMed ID: 19239494 [TBL] [Abstract][Full Text] [Related]
17. Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker. Weisser P; Krämer R; Sprenger GA Appl Environ Microbiol; 1996 Nov; 62(11):4155-61. PubMed ID: 8900006 [TBL] [Abstract][Full Text] [Related]
18. Crystallization and preliminary X-ray analysis of glucose-fructose oxidoreductase from Zymomonas mobilis. Loos H; Ermler U; Sprenger GA; Sahm H Protein Sci; 1994 Dec; 3(12):2447-9. PubMed ID: 7756998 [TBL] [Abstract][Full Text] [Related]
19. Use of the tac promoter and lacIq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis. Arfman N; Worrell V; Ingram LO J Bacteriol; 1992 Nov; 174(22):7370-8. PubMed ID: 1429459 [TBL] [Abstract][Full Text] [Related]
20. Cloning and expression in Escherichia coli of a phoA gene encoding a phosphate-irrepressible alkaline phosphatase of Zymomonas mobilis. Michel GP; Alvarez E; Guzzo J; Cami B; Baratti J FEMS Microbiol Lett; 1992 Nov; 77(1-3):103-8. PubMed ID: 1459397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]