These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 9063452)
21. Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase. Aziz MG; Michlmayr H; Kulbe KD; Del Hierro AM Enzyme Microb Technol; 2011 Jan; 48(1):85-91. PubMed ID: 22112775 [TBL] [Abstract][Full Text] [Related]
22. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. Malvessi E; Carra S; Pasquali FC; Kern DB; da Silveira MM; Ayub MA J Ind Microbiol Biotechnol; 2013 Jan; 40(1):1-10. PubMed ID: 23053345 [TBL] [Abstract][Full Text] [Related]
23. Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose-binding protein, ribose-binding protein, and alkaline phosphatase) in Bacillus subtilis. Collier DN J Bacteriol; 1994 May; 176(10):3013-20. PubMed ID: 8188602 [TBL] [Abstract][Full Text] [Related]
24. An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtilis. Meens J; Frings E; Klose M; Freudl R Mol Microbiol; 1993 Aug; 9(4):847-55. PubMed ID: 8231814 [TBL] [Abstract][Full Text] [Related]
25. The glutamate uptake regulatory protein (Grp) of Zymomonas mobilis and its relation to the global regulator Lrp of Escherichia coli. Peekhaus N; Tolner B; Poolman B; Krämer R J Bacteriol; 1995 Sep; 177(17):5140-7. PubMed ID: 7665494 [TBL] [Abstract][Full Text] [Related]
26. A multistep process is responsible for product-induced inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis. Fürlinger M; Haltrich D; Kulbe KD; Nidetzky B Eur J Biochem; 1998 Feb; 251(3):955-63. PubMed ID: 9490072 [TBL] [Abstract][Full Text] [Related]
27. Expression of the extracellular levansucrase and invertase genes from Zymomonas mobilis in Escherichia coli cells. Yanase H; Fujimoto J; Maeda M; Okamoto K; Kita K; Tonomura K Biosci Biotechnol Biochem; 1998 Sep; 62(9):1802-5. PubMed ID: 9805385 [TBL] [Abstract][Full Text] [Related]
28. Functional analysis of the methylerythritol phosphate pathway terminal enzymes IspG and IspH from Misra J; Mettert EL; Kiley PJ Microbiol Spectr; 2024 Jul; 12(7):e0425623. PubMed ID: 38785428 [TBL] [Abstract][Full Text] [Related]
29. Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Parker C; Barnell WO; Snoep JL; Ingram LO; Conway T Mol Microbiol; 1995 Mar; 15(5):795-802. PubMed ID: 7596282 [TBL] [Abstract][Full Text] [Related]
30. Characterization of Zymomonas mobilis alkaline phosphatase activity in Escherichia coli. Karunakaran T; Gunasekaran P Curr Microbiol; 1992 Jul; 25(1):41-5. PubMed ID: 1369189 [TBL] [Abstract][Full Text] [Related]
31. Cloning and expression in Escherichia coli of the dnaK gene of Zymomonas mobilis. Michel GP J Bacteriol; 1993 May; 175(10):3228-31. PubMed ID: 8491740 [TBL] [Abstract][Full Text] [Related]
32. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis. Severo JB; Pinto JC; Ferraz HC; Alves TL J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1575-85. PubMed ID: 21328074 [TBL] [Abstract][Full Text] [Related]
33. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Pedruzzi I; da Silva EA; Rodrigues AE Enzyme Microb Technol; 2011 Jul; 49(2):183-91. PubMed ID: 22112407 [TBL] [Abstract][Full Text] [Related]
34. Cloning and expression of the Zymomonas mobilis pyruvate kinase gene in Escherichia coli. Steiner P; Fussenegger M; Bailey JE; Sauer U Gene; 1998 Oct; 220(1-2):31-8. PubMed ID: 9767092 [TBL] [Abstract][Full Text] [Related]
35. Dislocation of membrane proteins in FtsH-mediated proteolysis. Kihara A; Akiyama Y; Ito K EMBO J; 1999 Jun; 18(11):2970-81. PubMed ID: 10357810 [TBL] [Abstract][Full Text] [Related]
36. Defective export in Escherichia coli caused by DsbA'-PhoA hybrid proteins whose DsbA' domain cannot fold into a conformation resistant to periplasmic proteases. Guigueno A; Belin P; Boquet PL J Bacteriol; 1997 May; 179(10):3260-9. PubMed ID: 9150222 [TBL] [Abstract][Full Text] [Related]
37. Optimizing Periplasmic Expression in Escherichia coli for the Production of Recombinant Proteins Tagged with the Small Metal-Binding Protein SmbP. Santos BD; Morones-Ramirez JR; Balderas-Renteria I; Casillas-Vega NG; Galbraith DW; Zarate X Mol Biotechnol; 2019 Jun; 61(6):451-460. PubMed ID: 30997666 [TBL] [Abstract][Full Text] [Related]
38. An allosterically insensitive class of cyclohexadienyl dehydrogenase from Zymomonas mobilis. Zhao G; Xia T; Ingram LO; Jensen RA Eur J Biochem; 1993 Feb; 212(1):157-65. PubMed ID: 7916685 [TBL] [Abstract][Full Text] [Related]
39. Characterization of multiple promoters and transcript stability in the sacB-sacC gene cluster in Zymomonas mobilis. Senthilkumar V; Rajendhran J; Busby SJ; Gunasekaran P Arch Microbiol; 2009 Jun; 191(6):529-41. PubMed ID: 19415238 [TBL] [Abstract][Full Text] [Related]
40. The gluEMP operon from Zymomonas mobilis encodes a high-affinity glutamate carrier with similarity to binding-protein-dependent transport systems. Peekhaus N; Krämer R Arch Microbiol; 1996 May; 165(5):325-32. PubMed ID: 8661924 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]