These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 9063455)
1. Characterization of the active site of Schwanniomyces occidentalis glucoamylase by in vitro mutagenesis. Hülseweh B; Dahlems UM; Dohmen J; Strasser AW; Hollenberg CP Eur J Biochem; 1997 Feb; 244(1):128-33. PubMed ID: 9063455 [TBL] [Abstract][Full Text] [Related]
2. Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Gellissen G; Janowicz ZA; Merckelbach A; Piontek M; Keup P; Weydemann U; Hollenberg CP; Strasser AW Biotechnology (N Y); 1991 Mar; 9(3):291-5. PubMed ID: 1367303 [TBL] [Abstract][Full Text] [Related]
3. Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Dohmen RJ; Strasser AW; Dahlems UM; Hollenberg CP Gene; 1990 Oct; 95(1):111-21. PubMed ID: 1979298 [TBL] [Abstract][Full Text] [Related]
4. Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis. Sierks MR; Svensson B Biochemistry; 1993 Feb; 32(4):1113-7. PubMed ID: 8424940 [TBL] [Abstract][Full Text] [Related]
5. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Fierobe HP; Stoffer BB; Frandsen TP; Svensson B Biochemistry; 1996 Jul; 35(26):8696-704. PubMed ID: 8679632 [TBL] [Abstract][Full Text] [Related]
6. Mutational analysis of the roles in catalysis and substrate recognition of arginines 54 and 305, aspartic acid 309, and tryptophan 317 located at subsites 1 and 2 in glucoamylase from Aspergillus niger. Frandsen TP; Christensen T; Stoffer B; Lehmbeck J; Dupont C; Honzatko RB; Svensson B Biochemistry; 1995 Aug; 34(32):10162-9. PubMed ID: 7640270 [TBL] [Abstract][Full Text] [Related]
8. Glucoamylase originating from Schwanniomyces occidentalis is a typical alpha-glucosidase. Sato F; Okuyama M; Nakai H; Mori H; Kimura A; Chiba S Biosci Biotechnol Biochem; 2005 Oct; 69(10):1905-13. PubMed ID: 16244441 [TBL] [Abstract][Full Text] [Related]
9. Energetic and mechanistic studies of glucoamylase using molecular recognition of maltose OH groups coupled with site-directed mutagenesis. Sierks MR; Svensson B Biochemistry; 2000 Jul; 39(29):8585-92. PubMed ID: 10913265 [TBL] [Abstract][Full Text] [Related]
10. Striking structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal alpha-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene. Naim HY; Niermann T; Kleinhans U; Hollenberg CP; Strasser AW FEBS Lett; 1991 Dec; 294(1-2):109-12. PubMed ID: 1743281 [TBL] [Abstract][Full Text] [Related]
11. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori. Natarajan S; Sierks MR Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145 [TBL] [Abstract][Full Text] [Related]
12. Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp176, Glu179 and Glu180 in the enzyme from Aspergillus awamori. Sierks MR; Ford C; Reilly PJ; Svensson B Protein Eng; 1990 Jan; 3(3):193-8. PubMed ID: 1970434 [TBL] [Abstract][Full Text] [Related]
13. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Chen HM; Ford C; Reilly PJ Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):275-81. PubMed ID: 8037681 [TBL] [Abstract][Full Text] [Related]
14. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme. Kim JH; Kim HR; Lim MH; Ko HM; Chin JE; Lee HB; Kim IC; Bai S Biotechnol Lett; 2010 May; 32(5):713-9. PubMed ID: 20131079 [TBL] [Abstract][Full Text] [Related]
15. Functional roles and subsite locations of Leu177, Trp178 and Asn182 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis. Sierks MR; Ford C; Reilly PJ; Svensson B Protein Eng; 1993 Jan; 6(1):75-9. PubMed ID: 8433972 [TBL] [Abstract][Full Text] [Related]
16. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides. Sierks MR; Svensson B Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668 [TBL] [Abstract][Full Text] [Related]
17. Expression and regulation of glucoamylase from the yeast Schwanniomyces castellii. Dowhanick TM; Russell I; Scherer SW; Stewart GG; Seligy VL J Bacteriol; 1990 May; 172(5):2360-6. PubMed ID: 2110140 [TBL] [Abstract][Full Text] [Related]
18. Glucoamylase mutants in the conserved active-site segment Trp170-Tyr175 located at a distance from the site of catalysis. Stoffer BB; Dupont C; Frandsen TP; Lehmbeck J; Svensson B Protein Eng; 1997 Jan; 10(1):81-7. PubMed ID: 9051738 [TBL] [Abstract][Full Text] [Related]
19. Genetic and enzymatic characterisation of glucoamylases from yeast. Hostinová E Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():19-21. PubMed ID: 9789746 [No Abstract] [Full Text] [Related]
20. Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion. Yáñez E; Carmona TA; Tiemblo M; Jiménez A; Fernández-Lobato M Biochem J; 1998 Jan; 329 ( Pt 1)(Pt 1):65-71. PubMed ID: 9405276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]