These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9063576)

  • 1. Ca2+/calmodulin-binding proteins in yeast. Catabolite repression and induction by carbon sources.
    dos Santos CF; Larson RE; Panek AD; Paschoalin VM
    Biochem Mol Biol Int; 1997 Feb; 41(2):359-66. PubMed ID: 9063576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of D-glucosamine as a gratuitous catabolite repressor of Saccharomyces carlsbergensis.
    Furst A; Michels CA
    Mol Gen Genet; 1977 Oct; 155(3):309-14. PubMed ID: 202860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory-deficient state.
    Schamhart DH; Ten Berge AM; Van De Poll KW
    J Bacteriol; 1975 Mar; 121(3):747-52. PubMed ID: 163813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential sensitivities of the two malate dehydrogenases and the maltose permease to the effect of glucose in Saccharomyces carlsbergensis.
    van Rijn J; van Wijk R
    J Bacteriol; 1972 May; 110(2):477-84. PubMed ID: 5022168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae.
    Fu L; Bounelis P; Dey N; Browne BL; Marchase RB; Bedwell DM
    J Bacteriol; 1995 Jun; 177(11):3087-94. PubMed ID: 7768805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological significance of phosphorylation and myristoylation in the regulation of cardiac muscle proteins.
    Raju RV; Kakkar R; Radhi JM; Sharma RK
    Mol Cell Biochem; 1997 Nov; 176(1-2):135-43. PubMed ID: 9406155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of bovine brain 81-kDa acidic calmodulin binding protein (ACAMP-81) in vitro.
    Tokumitsu H; Mizutani A; Watanabe M; Hidaka H
    Arch Biochem Biophys; 1991 Apr; 286(1):94-8. PubMed ID: 1654783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolite inactivation of the sugar transporters in Saccharomyces cerevisiae is inhibited by the presence of a nitrogen source.
    Lucero P; Moreno E; Lagunas R
    FEMS Yeast Res; 2002 Jan; 1(4):307-14. PubMed ID: 12702334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a 80 kDa calmodulin-binding protein as a new Ca2+/calmodulin-dependent kinase by renaturation blotting assay (RBA).
    Kato M; Hagiwara M; Hidaka H
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):339-42. PubMed ID: 1310591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 60 kDa polypeptide of skeletal-muscle sarcoplasmic reticulum is a calmodulin-dependent protein kinase that associates with and phosphorylates several membrane proteins.
    Leddy JJ; Murphy BJ; Qu-Yi ; Doucet JP; Pratt C; Tuana BS
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):849-56. PubMed ID: 8240301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of phosphorylation of smooth-muscle caldesmon.
    Ngai PK; Walsh MP
    Biochem J; 1987 Jun; 244(2):417-25. PubMed ID: 2822003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of respiratory and fermentative balance in yeast.
    Ball AJ; Tustanoff ER
    Biochem J; 1970 Feb; 116(4):23P-24P. PubMed ID: 5435460
    [No Abstract]   [Full Text] [Related]  

  • 15. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of nuclear calmodulin-binding proteins of Saccharomyces cerevisiae.
    Hiraga K; Suzuki K; Tsuchiya E; Miyakawa T
    Biochim Biophys Acta; 1993 May; 1177(1):25-30. PubMed ID: 8485166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression.
    Salema-Oom M; De Sousa HR; Assunção M; Gonçalves P; Spencer-Martins I
    J Appl Microbiol; 2011 Jan; 110(1):364-74. PubMed ID: 21091593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of nickelous ions on carbohydrate transport in yeast cells.
    van Steveninck J
    Biochim Biophys Acta; 1966 Sep; 126(1):154-62. PubMed ID: 5970535
    [No Abstract]   [Full Text] [Related]  

  • 19. Target molecules of calmodulin on microtubules of Tetrahymena cilia.
    Hirano-Ohnishi J; Watanabe Y
    Exp Cell Res; 1988 Sep; 178(1):18-24. PubMed ID: 3409977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time PCR analysis of carbon catabolite repression of cellobiose dehydrogenase gene transcription in Trametes versicolor.
    Stapleton PC; O'Mahony J; Dobson AD
    Can J Microbiol; 2004 Feb; 50(2):113-9. PubMed ID: 15052313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.