These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9063576)

  • 41. Calmodulin binding proteins in human erythrocyte membranes.
    Wetzker R; Klinger R; Frunder H; Hegewald H; Müller E
    Biochem Int; 1986 May; 12(5):751-6. PubMed ID: 2942145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases.
    Cunningham KW; Fink GR
    J Cell Biol; 1994 Feb; 124(3):351-63. PubMed ID: 7507493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variant surface glycoprotein from Trypanosoma brucei clone YTat 1.1 contains a latent calmodulin-binding domain.
    Ruben L; Ridgley EL; Haghighat NG; Chan E
    Mol Biochem Parasitol; 1991 May; 46(1):123-36. PubMed ID: 1852168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transport of alpha-glucosides in Saccharomyces carlsbergensis.
    de Kroon RA
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:I33-4. PubMed ID: 5312039
    [No Abstract]   [Full Text] [Related]  

  • 45. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus.
    Wu J; Huang KP; Huang FL
    J Neurochem; 2003 Sep; 86(6):1524-33. PubMed ID: 12950461
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally.
    Wendell DL; Bisson LF
    J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of maltose fermentation in Saccharomyces carlsbergensis. II. Properties of a constitutive MAL6-mutant.
    ten Berge AM; Zoutewelle G; van de Poll KW; Bloemers HP
    Mol Gen Genet; 1973 Sep; 125(2):139-46. PubMed ID: 4774594
    [No Abstract]   [Full Text] [Related]  

  • 48. Regulation of energy metabolism in Saccharomyces cerevisiae. Relationships between catabolite repression, trehalose synthesis, and mitochondrial development.
    Panek AD; Mattoon JR
    Arch Biochem Biophys; 1977 Sep; 183(1):306-16. PubMed ID: 334081
    [No Abstract]   [Full Text] [Related]  

  • 49. Dbf2 is implicated in a Cbt1-dependent pathway following a shift from glucose to galactose or non-fermentable carbon sources in Saccharomyces cerevisiae.
    Grandin N; Charbonneau M
    Mol Gen Genet; 1999 Mar; 261(2):402-7. PubMed ID: 10102376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae.
    Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D
    J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of a calmodulin-dependent protein kinase in the cardiac cytosol, which phosphorylates phospholamban in the sarcoplasmic reticulum.
    Iwasa T; Inoue N; Miyamoto E
    J Biochem; 1985 Aug; 98(2):577-80. PubMed ID: 4066656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phase-specific gene expression in Saccharomyces cerevisiae, using maltose as carbon source under oxygen-limiting conditions.
    Donalies UE; Stahl U
    Curr Genet; 2001 May; 39(3):150-5. PubMed ID: 11409176
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbohydrate carbon sources induce loss of flocculation of an ale-brewing yeast strain.
    Soares EV; Vroman A; Mortier J; Rijsbrack K; Mota M
    J Appl Microbiol; 2004; 96(5):1117-23. PubMed ID: 15078529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calmodulin-binding proteins of Saccharomyces cerevisiae.
    Liu YS; Yamashita Y; Tsuchiya E; Miyakawa T
    Biochem Biophys Res Commun; 1990 Jan; 166(2):681-6. PubMed ID: 2405853
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A tobacco (Nicotiana tabaccum) calmodulin-binding protein kinase, NtCBK2, is regulated differentially by calmodulin isoforms.
    Hua W; Liang S; Lu YT
    Biochem J; 2003 Nov; 376(Pt 1):291-302. PubMed ID: 12911329
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calmodulin-binding proteins of Tetrahymena microsomal membranes.
    Nagao S; Nozawa Y
    Comp Biochem Physiol B; 1985; 82(4):689-93. PubMed ID: 3937657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.
    Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG
    Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and partial purification of a high-molecular-mass, calmodulin-binding, tyrosyl-phosphorylated protein from lymphocyte plasma membranes.
    Kostka G
    Exp Cell Res; 1989 Mar; 181(1):85-93. PubMed ID: 2465165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Autophosphorylation of smooth-muscle caldesmon.
    Scott-Woo GC; Walsh MP
    Biochem J; 1988 Jun; 252(2):463-72. PubMed ID: 3415667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulatory interactions of calmodulin-binding proteins: phosphorylation of calcineurin by autophosphorylated Ca2+/calmodulin-dependent protein kinase II.
    Hashimoto Y; King MM; Soderling TR
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):7001-5. PubMed ID: 2842800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.