These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9063713)

  • 21. Thalamic bursting in rats during different awake behavioral states.
    Fanselow EE; Sameshima K; Baccala LA; Nicolelis MA
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15330-5. PubMed ID: 11752471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects.
    McCarley RW; Benoit O; Barrionuevo G
    J Neurophysiol; 1983 Oct; 50(4):798-818. PubMed ID: 6631464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold, and receptive field size.
    Edeline JM; Manunta Y; Hennevin E
    J Neurophysiol; 2000 Aug; 84(2):934-52. PubMed ID: 10938318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations.
    Lenz FA; Garonzik IM; Zirh TA; Dougherty PM
    Neuroscience; 1998 Oct; 86(4):1065-81. PubMed ID: 9697114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones.
    Domich L; Oakson G; Steriade M
    J Physiol; 1986 Oct; 379():429-49. PubMed ID: 3560000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal firing in the pallidal region: firing patterns during sleep-wakefulness cycle in cats.
    Detari L; Juhasz G; Kukorelli T
    Electroencephalogr Clin Neurophysiol; 1987 Aug; 67(2):159-66. PubMed ID: 2439293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wakefulness-sleep modulation of thalamic multiple unit activity and EEG in man.
    Velasco F; Velasco M; Cepeda C; Muñoz H
    Electroencephalogr Clin Neurophysiol; 1979 Nov; 47(5):597-606. PubMed ID: 91487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons.
    Hirai D; Nakamura KC; Shibata KI; Tanaka T; Hioki H; Kaneko T; Furuta T
    Brain Struct Funct; 2018 Mar; 223(2):851-872. PubMed ID: 28993883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of spontaneous activity patterns of human thalamic ventrolateral neurons and their modifications due to functional brain changes.
    Raeva S; Vainberg N; Dubinin V
    Neuroscience; 1999 Jan; 88(2):365-76. PubMed ID: 10197760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sleep-wakefulness: inverse deviation from randomness of neuronal firing patterns in the feline thalamus. A new form of homeostasis?
    Marczynski TJ; Burns LL; Livezey GT
    Experientia; 1983 Jul; 39(7):795-7. PubMed ID: 6683199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mode of firing and rectifying properties of nucleus ovoidalis neurons in the avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1351-60. PubMed ID: 8035219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slow fluctuations of single unit activities of hippocampal and thalamic neurons in cats. I. Relation to natural sleep and alert states.
    Kodama T; Mushiake H; Shima K; Nakahama H; Yamamoto M
    Brain Res; 1989 May; 487(1):26-34. PubMed ID: 2752287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of postsynaptic activities of thalamic lateral geniculate neurons by spontaneous changes in number of retinal inputs in chronic cats. 1. Input-output relations.
    Fourment A; Hirsch JC; Marc ME; Guidet C
    Neuroscience; 1984 Jun; 12(2):453-64. PubMed ID: 6087199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bursting activity of neurons in the human anterior thalamic nucleus.
    Hodaie M; Cordella R; Lozano AM; Wennberg R; Dostrovsky JO
    Brain Res; 2006 Oct; 1115(1):1-8. PubMed ID: 16962566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons.
    Albéri L; Lintas A; Kretz R; Schwaller B; Villa AE
    J Neurophysiol; 2013 Jun; 109(11):2827-41. PubMed ID: 23486206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.