These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 9063889)
1. NO interacts with the tyrosine radical Y(D). of photosystem II to form an iminoxyl radical. Sanakis Y; Goussias C; Mason RP; Petrouleas V Biochemistry; 1997 Feb; 36(6):1411-7. PubMed ID: 9063889 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the interaction between manganese and tyrosine Z in acetate-inhibited photosystem II. Szalai VA; Kühne H; Lakshmi KV; Brudvig GW Biochemistry; 1998 Sep; 37(39):13594-603. PubMed ID: 9753446 [TBL] [Abstract][Full Text] [Related]
3. Calcium induces binding and formation of a spin-coupled dimanganese(II,II) center in the apo-water oxidation complex of photosystem II as precursor to the functional tetra-Mn/Ca cluster. Ananyev GM; Dismukes GC Biochemistry; 1997 Sep; 36(38):11342-50. PubMed ID: 9298953 [TBL] [Abstract][Full Text] [Related]
4. A Mn(II)-Mn(III) EPR signal arises from the interaction of NO with the S1 state of the water-oxidizing complex of photosystem II. Sarrou J; Ioannidis N; Deligiannakis Y; Petrouleas V Biochemistry; 1998 Mar; 37(11):3581-7. PubMed ID: 9530284 [TBL] [Abstract][Full Text] [Related]
5. EPR investigation of water oxidizing photosystem II: detection of new EPR signals at cryogenic temperatures. Nugent JH; Turconi S; Evans MC Biochemistry; 1997 Jun; 36(23):7086-96. PubMed ID: 9188708 [TBL] [Abstract][Full Text] [Related]
6. Reversible binding of nitric oxide to tyrosyl radicals in photosystem II. Nitric oxide quenches formation of the S3 EPR signal species in acetate-inhibited photosystem II. Szalai VA; Brudvig GW Biochemistry; 1996 Nov; 35(47):15080-7. PubMed ID: 8942675 [TBL] [Abstract][Full Text] [Related]
7. The S0 state of the water oxidizing complex in photosystem II: pH dependence of the EPR split signal induction and mechanistic implications. Sjöholm J; Havelius KG; Mamedov F; Styring S Biochemistry; 2009 Oct; 48(40):9393-404. PubMed ID: 19736946 [TBL] [Abstract][Full Text] [Related]
8. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Vass I; Sass L; Spetea C; Bakou A; Ghanotakis DF; Petrouleas V Biochemistry; 1996 Jul; 35(27):8964-73. PubMed ID: 8688433 [TBL] [Abstract][Full Text] [Related]
9. Iron-blocking the high-affinity Mn-binding site in photosystem II facilitates identification of the type of hydrogen bond participating in proton-coupled electron transport via YZ. Semin BK; Lovyagina ER; Timofeev KN; Ivanov II; Rubin AB; Seibert M Biochemistry; 2005 Jul; 44(28):9746-57. PubMed ID: 16008359 [TBL] [Abstract][Full Text] [Related]
10. Electron paramagnetic resonance and mutational analyses revealed the involvement of photosystem II-L subunit in the oxidation step of Tyr-Z by P680+ to form the Tyr-Z+P680Pheo- state in photosystem II. Hoshida H; Sugiyama R; Nakano Y; Shiina T; Toyoshima Y Biochemistry; 1997 Oct; 36(40):12053-61. PubMed ID: 9315843 [TBL] [Abstract][Full Text] [Related]
12. Flash-induced relaxation changes of the EPR signals from the manganese cluster and YD reveal a light-adaptation process of photosystem II. Peterson S; Ahrling KA; Högblom JE; Styring S Biochemistry; 2003 Mar; 42(9):2748-58. PubMed ID: 12614170 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic characterization of intermediate steps involved in donor-side-induced photoinhibition of photosystem II. Jegerschöld C; Styring S Biochemistry; 1996 Jun; 35(24):7794-801. PubMed ID: 8672480 [TBL] [Abstract][Full Text] [Related]
14. NO reversibly reduces the water-oxidizing complex of photosystem II through S0 and S-1 to the state characterized by the Mn(II)-Mn(III) multiline EPR signal. Ioannidis N; Sarrou J; Schansker G; Petrouleas V Biochemistry; 1998 Nov; 37(47):16445-51. PubMed ID: 9843409 [TBL] [Abstract][Full Text] [Related]
15. Formation of split electron paramagnetic resonance signals in photosystem II suggests that tyrosine(Z) can be photooxidized at 5 K in the S0 and S1 states of the oxygen-evolving complex. Zhang C; Styring S Biochemistry; 2003 Jul; 42(26):8066-76. PubMed ID: 12834358 [TBL] [Abstract][Full Text] [Related]
16. Relationship between activity, D1 loss, and Mn binding in photoinhibition of photosystem II. Krieger A; Rutherford AW; Vass I; Hideg E Biochemistry; 1998 Nov; 37(46):16262-9. PubMed ID: 9819218 [TBL] [Abstract][Full Text] [Related]
17. Vibrational spectrum associated with the reduction of tyrosyl radical D* in photosystem II: a comparative biochemical and kinetic study. Kim S; Barry BA Biochemistry; 1998 Sep; 37(39):13882-92. PubMed ID: 9753478 [TBL] [Abstract][Full Text] [Related]
18. The tetranuclear manganese cluster in photosystem II: location and magnetic properties of the S2 state as determined by saturation-recovery EPR spectroscopy. Koulougliotis D; Schweitzer RH; Brudvig GW Biochemistry; 1997 Aug; 36(32):9735-46. PubMed ID: 9245405 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen bonding of redox-active tyrosine Z of photosystem II probed by FTIR difference spectroscopy. Berthomieu C; Hienerwadel R; Boussac A; Breton J; Diner BA Biochemistry; 1998 Jul; 37(30):10547-54. PubMed ID: 9692943 [TBL] [Abstract][Full Text] [Related]
20. The EPR spectrum of tyrosine Z* and its decay kinetics in O2-evolving photosystem II preparations. Ioannidis N; Zahariou G; Petrouleas V Biochemistry; 2008 Jun; 47(24):6292-300. PubMed ID: 18494501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]