These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9064611)

  • 81. Objective assessment of cervical spinal cord injury levels by transcranial magnetic motor-evoked potentials.
    Shields CB; Ping Zhang Y; Shields LB; Burke DA; Glassman SD
    Surg Neurol; 2006 Nov; 66(5):475-83; discussion 483. PubMed ID: 17084191
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury.
    Cayli SR; Kocak A; Yilmaz U; Tekiner A; Erbil M; Ozturk C; Batcioglu K; Yologlu S
    Eur Spine J; 2004 Dec; 13(8):724-32. PubMed ID: 15232723
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Spinal cord blood flow and evoked potential responses after treatment with nimodipine or methylprednisolone in spinal cord-injured rats.
    Ross IB; Tator CH
    Neurosurgery; 1993 Sep; 33(3):470-6; discussion 476-7. PubMed ID: 8413879
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord.
    Prewitt CM; Niesman IR; Kane CJ; Houlé JD
    Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Embryonic spinal cord transplants enhance locomotor performance in spinalized newborn rats.
    Tessler A; Fischer I; Giszter S; Himes BT; Miya D; Mori F; Murray M
    Adv Neurol; 1997; 72():291-303. PubMed ID: 8993706
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Activity dependent stimulation increases synaptic efficacy in spared pathways in an anesthetized rat model of spinal cord contusion injury.
    Borrell JA; Krizsan-Agbas D; Nudo RJ; Frost SB
    Restor Neurol Neurosci; 2022; 40(1):17-33. PubMed ID: 35213336
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Neurological recovery in diabetic rats following spinal cord injury.
    Tariq M; Morais C; Kishore PN; Biary N; Al Deeb S; Al Moutaery K
    J Neurotrauma; 1998 Apr; 15(4):239-51. PubMed ID: 9555970
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Evaluation of early motor and sensory evoked potentials in cervical spinal cord injury.
    Chéliout-Héraut F; Loubert G; Masri-Zada T; Aubrun F; Pasteyer J
    Neurophysiol Clin; 1998 Feb; 28(1):39-55. PubMed ID: 9562998
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology.
    Carlson GD; Gorden CD; Oliff HS; Pillai JJ; LaManna JC
    J Bone Joint Surg Am; 2003 Jan; 85(1):86-94. PubMed ID: 12533577
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A study of the effects of hyperbaric oxygen on the experimental spinal cord injury.
    Yeo JD; Stabback S; McKenzie B
    Med J Aust; 1977 Jul; 2(5):145-7. PubMed ID: 895648
    [TBL] [Abstract][Full Text] [Related]  

  • 91. An experimental model for the transplantation of fetal central nervous system cells to the injured spinal cord in rats.
    de Barros Filho TE; de Oliveira RP; Tsanaclis AM; de Barros EM; Cristante AF; Palma RM; dos Santos CV; Marcon RM
    Rev Hosp Clin Fac Med Sao Paulo; 2002; 57(6):257-64. PubMed ID: 12612757
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Somatosensory-evoked and dermatomal-evoked potentials are not clinically useful in the prognostication of acute spinal cord injury.
    Katz RT; Toleikis RJ; Knuth AE
    Spine (Phila Pa 1976); 1991 Jul; 16(7):730-5. PubMed ID: 1925746
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury.
    Li R; Huang ZC; Cui HY; Huang ZP; Liu JH; Zhu QA; Hu Y
    Neural Regen Res; 2021 Jul; 16(7):1323-1330. PubMed ID: 33318412
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Plasma polypyrrole implants recover motor function in rats after spinal cord transection.
    Cruz GJ; Mondragón-Lozano R; Diaz-Ruiz A; Manjarrez J; Olayo R; Salgado-Ceballos H; Olayo MG; Morales J; Alvarez-Mejía L; Morales A; Méndez-Armenta M; Plascencia N; del Carmen Fernandez M; Ríos C
    J Mater Sci Mater Med; 2012 Oct; 23(10):2583-92. PubMed ID: 22798167
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Experimental spinal cord trauma: potentiation by alcohol.
    Brodner RA; Van Gilder JC; Collins WF
    J Trauma; 1981 Feb; 21(2):124-9. PubMed ID: 7206001
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Repair and recovery following spinal cord injury in a neonatal marsupial (Monodelphis domestica).
    Saunders NR; Deal A; Knott GW; Varga ZM; Nicholls JG
    Clin Exp Pharmacol Physiol; 1995 Aug; 22(8):518-26. PubMed ID: 7586707
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Oxygen transport in intraspinal fetal grafts: graft-host relations.
    Stokes BT; Reier PJ
    Exp Neurol; 1991 Mar; 111(3):312-23. PubMed ID: 1999233
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Identification of injury type using somatosensory and motor evoked potentials in a rat spinal cord injury model.
    Li R; Li HL; Cui HY; Huang YC; Hu Y
    Neural Regen Res; 2023 Feb; 18(2):422-427. PubMed ID: 35900440
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Trihydroxyethyl Rutin Provides Neuroprotection in Rats With Cervical Spinal Cord Hemi-Contusion.
    Liu Y; Liu Q; Yang Z; Li R; Huang Z; Huang Z; Liu J; Wu X; Lin J; Wu X; Zhu Q
    Front Neurosci; 2021; 15():759325. PubMed ID: 34867167
    [No Abstract]   [Full Text] [Related]  

  • 100. Carbon filaments provide support and directionality to growing rat fetal spinal cord explants.
    Khan T; Sayers S; Gaik G; Dauzvardis M
    Neurosci Lett; 1990 Oct; 118(2):172-6. PubMed ID: 2274266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.